摘要
The epididymal β-defensins have evolved by repeated gene duplication and divergence to encode a family of proteins that provide direct protection against pathogens and also support the male reproductive tract in its primary function. Male tract defensins also facilitate recovery from pathogen attack. The β-defensins possess ancient conserved sequence and structural features widespread in multi-cellular organisms, suggesting fundamental roles in species survival. Primate SPAG11, the functional fusion of two ancestrally independent β-defensin genes, produces a large family of alternatively spliced transcripts that are expressed according to tissue-specific and species-specific constraints. The complexity of SPAG11 varies in different branches of mammalian evolution. Interactions of human SPAG11D with host proteins indicate involvement in multiple signaling pathways. (Asian J Andro12007 July; 9: 453- 462)
The epididymal β-defensins have evolved by repeated gene duplication and divergence to encode a family of proteins that provide direct protection against pathogens and also support the male reproductive tract in its primary function. Male tract defensins also facilitate recovery from pathogen attack. The β-defensins possess ancient conserved sequence and structural features widespread in multi-cellular organisms, suggesting fundamental roles in species survival. Primate SPAG11, the functional fusion of two ancestrally independent β-defensin genes, produces a large family of alternatively spliced transcripts that are expressed according to tissue-specific and species-specific constraints. The complexity of SPAG11 varies in different branches of mammalian evolution. Interactions of human SPAG11D with host proteins indicate involvement in multiple signaling pathways. (Asian J Andro12007 July; 9: 453- 462)