期刊文献+

原子力显微镜微悬臂梁品质因数的数字调控技术的研究 被引量:1

Digital Adjustment of AFM Microcantilevers' Quality Factor
下载PDF
导出
摘要 为了提高轻敲模式原子力显微镜的微悬臂梁的低品质因数,在分析品质因数调控技术原理的基础上,设计了基于DSP的品质因数数字调控系统。该系统结构简单,操作方便,智能性和实时性好,能够比较精确地调控微悬臂梁振动的品质因数。通过对比液体中微悬臂梁振动的频谱以及蛋白质分子的成像实验证明,该数字调控电路能够提高微悬臂梁的力灵敏度,非常适合用于对软样品的检测。 The low quality factor (Q-factor) of microcantilever when operating an atomic force microscopy in tapping mode in liquid limits the instrument's resolution and sensitivity. By analyzing the Q-factor control theory, a module based on a DSP (digital signal processor) technique was developed to digitally tune the Q-factor of a microcantilever. The module has the advantages of simple structure, easy operation, fast feedback control and high Q-factor tuning precision. By comparing the frequency spectra of a microcantilever in liquid and protein molecule's images in butanol solution respectively, it is shown that the digital Q-factor tuning module can improve force sensitivity of the microcantilever and is suitable for testing soft samples.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2007年第13期1581-1583,1614,共4页 China Mechanical Engineering
基金 国家自然科学基金资助项目(50305025 50675152)
关键词 原子力显微镜 微悬臂梁 品质因数 轻敲模式 atomic force microscopy microcantilever quality factor tapping mode
  • 相关文献

参考文献9

  • 1Lee G U,Chrisey L A,Colton R J.Direct Measurement of the Forces between Complementary Stands of DNA[J].Science,1994,266:771-773.
  • 2Ilic B,Czaplewski D,Craighead H G.Mechanical Resonant Immunospecific Biological Detector[J].Appl.Phys.Lett.,2000,77:450-452.
  • 3Ahmed N,Nino D F,Moy V T.Measurement of Solution Viscosity by Atomic Force Microscopy[J].Rev.Sci.Instrum.,2001,72:2731-2734.
  • 4Putman C A,van der Werf K O,de Grooth B G.Tapping Mode Atomic Force Microscopy in Liquid[J].Appl.Phys.Lett.,2000,64:2454-2456.
  • 5Tamayo J,Humphris A D L,Owen R J,et al.High-Q Dynamic Force Microscopy in Liquid and Its Application to Living Cells[J].Biophys J.,2001,81:526-537.
  • 6Sulchek T,Hsieh R,Adams J D.High-speed Tapping Mode Imaging with Active Q Control for Atomic Force Microscopy[J].Appl.Phys.Lett.,2000,76:1473-1475.
  • 7Gotsmann B,Seidel C,Anczykowski B,et al.Conservative and Dissipative Tip-sample Interaction Forces Probed with Dynamic AFM[J].Phys.Rev.B.,1999,60:11051-11061.
  • 8Cleveland J P,Anczykowski B,Schmid A E,et al.Energy Dissipation in Tapping-mode Atomic Force Microscopy[J].Appl.Phys.Lett.,1998,72:2613-2615.
  • 9Rodriguez T R,Garcia R.Theory of Q Control in Atomic Force Microscopy[J].Appl.Phys.Lett.,2003,82:4821-4823.

同被引文献8

  • 1杨学恒,陈红兵,费德国,谢超,靳平,杨惠.一种高精度原子力显微镜的设计及应用[J].中国机械工程,2004,15(21):1909-1911. 被引量:13
  • 2解国新,丁建宁,范真,付永忠.硅基微机械表面粘附及摩擦性能的AFM试验研究[J].中国机械工程,2006,17(2):200-203. 被引量:4
  • 3何光宏,张志津,彭光含,白海会,杨学恒.基于STM的原子力显微镜的设计及应用[J].电子显微学报,2006,25(1):26-29. 被引量:7
  • 4Sherma J, John D, Larkin F. Atomic Force Microscopy(AFM)[J]. Journal of AOAC International, 2005, 88(6):133-140.
  • 5Aoki J, Gao W, Kiyono S, et al. A High Precision AFM for Nanometrology of Large Area Mierostructured Surfaces[J].Key Engineering Materials, 2005, 295/296:65-70.
  • 6Li X H, Ji T, Hu J, et al. Optimization of Specimen Preparation of Thin Cell Section for AFM Observation[J]. Uhramicroscopy, 2008, 108(9) :826-831.
  • 7Wu Y Z, Hu Y, Cai JY, et al. The Analysis of Morphological Distortion during AFM Study of Cells[J]. Scanning, 2008, 30(5):426-432.
  • 8Almeida C M, Prioli R. Atomic Force Microscopy Tip Torsion Contribution to the Measurement of Nanomechanicai Properties[J]. Journal of Materials Science, 2008, 43(17) :5998-6004.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部