摘要
结合病毒进化机制,提出一种基因表达式编程算法来解决函数拟合和序列预测等数值优化问题.该算法通过构造新的病毒更新和感染机制,有效加速种群的进化并避免早熟收敛的发生.性能分析和实验结果表明:与传统的基因表达式编程算法相比,本文算法无论在解的质量上还是在收敛速度上都要更好.最后还将本文算法应用于图像定标的实际工程中,取得较好计算效果,具有较大实用价值.
Combined with the concept of the virus evolution principles , an algorithm, virus-gene expression programming (VGEP), is proposed to solve the function fitting problem and the time -series optimization problem. It improves searching efficiency and decreases the probability of premature phenomena by constructing a new update and infect mechanism for virus. Theoretical analysis has proved that VGEP converges to the global optimum. The simulation results indicate that VGEP performs better than SGEP both in quality of solution and speed of convergence. The results from the project of image calibration show the effectiveness of the propose algorithm.
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2007年第3期399-405,共7页
Pattern Recognition and Artificial Intelligence
基金
国家自然科学基金项目(No.69775022)
国家863计划项目(No.863-306-ZT04-06-3)资助