期刊文献+

适合稀少空间特征的同位模式挖掘算法 被引量:3

Co-location pattern mining algorithm with rare spatial features
下载PDF
导出
摘要 空间同位模式挖掘是空间数据挖掘的一个重要方向.现有的同位模式挖掘着重研究每个空间特征的平等参与,而这在具有稀少特征的空间数据中会遗漏一些很有价值的模式.首先提出了一种新的称为maxPR的度量方法,每个确定的同位规则都与具有高的maxPR值的同位模式相关.其次,阐述了maxPR的弱单调性,并利用maxPR的弱单调性提出了一种适合稀少空间特征的同位模式挖掘的有效算法. Mining technology of spatial co-location pattern is an important direction in spatial data mining. The existing studies on co-location pattern mining emphasize on the characteristic of equal participation for each spatial feature. Some valuable patterns will be omitted in these rare spatial features. Firstly, a new measure called maxPR is proposed. Each certain co-location rule is interrelated with a co-location pattern with a high maxPR. Secondly, the weak maxPR monotonous is discussed. This property can be used to develop efficient algorithm to mine co-location pattern with high maxPR from spatial data sets with rare spatial features.
出处 《浙江工业大学学报》 CAS 2007年第4期408-412,共5页 Journal of Zhejiang University of Technology
基金 浙江省教育厅资助项目(20060865)
关键词 空间特征 空间同位模式 参与率 参与索引 spatial feature spatial co-location patterns participation ratio participation index
  • 相关文献

参考文献4

  • 1MUNRO R,CHAWLA S,SUN P.Complex spatial relationships[C]∥IEEE Computer Society.Proceedings of The Third IEEE International Conference on Data Mining.Washington:IEEE Computer Society,2003:227-234.
  • 2SHEKHAR S,Huang Y.Co-location rules mining:a summary of results[J].Lecture Notes in Computer Science,2001,2121(6):236-242.
  • 3HUANG Y,XIONG H,SHEKHAR S,et al.Mining confident co-location rules without a support threshold[C]∥ACM.Proc 2003 ACM Symposium on Applied Computing.New York:ACM Press,2003:497-501.
  • 4ZHANG X,MAMOULIS N,CHEUNG D,et al.Fast Ming of Spatial Collocations[C]∥ACM.Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM Press,2004:384-393.

同被引文献47

  • 1包玉珍,王丽珍,周丽华.空间co-location模式挖掘算法介绍及应用[J].郑州大学学报(理学版),2007,39(3):84-88. 被引量:2
  • 2高世健,王丽珍,肖清.一种基于U-AHC的不确定空间co-location模式挖掘算法[J].计算机研究与发展,2011,48(S3):60-66. 被引量:7
  • 3王占全,王申康,华成.空间分类数据同位规则挖掘算法[J].计算机辅助设计与图形学学报,2005,17(10):2339-2344. 被引量:5
  • 4马荣华,马晓冬,蒲英霞.从GIS数据库中挖掘空间关联规则研究[J].遥感学报,2005,9(6):733-741. 被引量:24
  • 5Koperski K. Han J. Discovery of Spatial Association P.ules in Geographic lnfomlation Databases[C], LNCS951, 1995.
  • 6Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules[C]. The 20th International Conference on Very Large Data Bases, Santiago, Chile, 1994.
  • 7Han J, Pei j, Yin Y. Mining Frequent Patterns without Candidate Generation{C].The 2001.
  • 8ACM SIGMOD Intemation;tl Conference on Management of Data, 2000 Estivill-Castro V, Murray A. Discovering Associations in Spatial Data - An Efficient Medoid Based Approach[C].The Second Pacific-Asia Conference oil Knowledge Discovery and Data Mining, 1998.
  • 9Morimoto Y. Mining Frequent Neighboring Class Sets in Spatial Databases[C]. ACM SIGKDI) International Cone Knowledge Discovery and Data Mining, San Francisco, CA, USA,2001I.
  • 10Shekhar S, Huang Y. Co-location Rules Mining: A Smnmary of Results[C]. Int' 1 Symposium on Spatio and Temporal Database(SSTD 2001), 2001.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部