摘要
为提高医学文献检索的效率和检索结果输出的有效性,快速客观地为科研人员提供高信度、低冗余的参考文献,实现检索结果按相关度排序输出,就基于向量空间模型的文献相关度计算方案进行探讨,提出基于相关度的医学文献聚类分析和相关度排序。
In order to improve the precision and the quality of the literature retrieval, this paper explores similarity computing scheme based on Vector Space Model (VSM), and describes the clustering algorithm of biomedical literature on the basis of similarity model. Applying the method of similarity algorithm and cluster analysis, the searched papers can be ranked by degree of similarity.
出处
《现代图书情报技术》
CSSCI
北大核心
2007年第7期63-67,共5页
New Technology of Library and Information Service
关键词
信息存储与检索
相关度
向量空间模型
聚类分析
Information storage and retrieval Similarity Vector space model Cluster analysis