期刊文献+

木材导热系数非线性拟合的神经网络模型 被引量:9

Nonlinear fitting calculation of wood thermal conductivity using neural networks
下载PDF
导出
摘要 为了得到木材导热系数随各种物性参数变化的非线性规律,提出了一种基于人工神经网络的预测计算模型.该模型以木材的温度和孔隙率为输入量,以其导热系数为输出量.设隐层的神经元数分别为3~8,构建了6个不同隐层结构的神经网络,并利用桦木的导热系数分别对这6个神经网络进行了训练.通过对误差的比较分析,得到了具有最优性能的网络型式,其隐层具有6个神经元,训练结果的平均相对误差为0.21%,平均绝对误差为4.33×10^-4 W/(m·K).利用该最优网络对不同温度和孔隙率下桦木的导热系数进行了预测,其结果与已知的实验测量数据吻合得很好,表明神经网络理论可以有效地用于木材导热系数的非线性拟合计算而且具有较高的精度. A computational model based on artificial neural networks (ANN) was proposed to find the nonlinear variance regulation of the thermal conductivity versus physical properties of wood. The temperature and the porosity of wood were set as the two inputs and the thermal conductivity of wood was set as the output. The number of neurons within the hidden layer varied from three to eight with increment of one, resulting in a total of six networks. The thermal conductivity of birch was predicted using these six networks respectively. The optimal network was recognized as the one which had six neurons within the hidden layer by comparison and analysis of the errors. The mean relative error was 0.21%, and the mean absolute error was 4.33×10^-4 W/(m·K). This network was used to predict thermal conductivities of birch at different temperature and porosity. Results demonstrated good agreement between the predicted and the available experimental data, which showed that the ANN model can be used to effectively predict the thermal conductivity of wood and that it has ideal accuracy.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2007年第7期1201-1204,共4页 Journal of Zhejiang University:Engineering Science
基金 国家"973"重点基础研究发展规划资助项目(2001CB409600) 浙江大学优秀青年教师资助计划资助项目
关键词 木材 导热系数 神经网络 温度 孔隙率 wood thermal conductivity neural network temperature porosity
  • 相关文献

参考文献10

  • 1SULEIMAN B M,LARFELDT J,LECKNER B,et al.Thermal conductivity and diffusivity of wood[J].Wood Science and Technology,1999,33(6):465-473.
  • 2BISHOP C M.Neural networks and their applications[J].Review of Scientific Instruments,1994,65(6):1803-1832.
  • 3杨克己.基于神经网络的小波域超声信号消噪技术研究[J].浙江大学学报(工学版),2005,39(6):775-779. 被引量:2
  • 4陈磊,张土乔,吕谋,何小香.混沌遗传算法优化管网状态神经网络模型[J].浙江大学学报(工学版),2005,39(6):874-877. 被引量:3
  • 5王瑞明,曾玉金,蒋静坪.基于免疫遗传算法的模糊神经网络在交流伺服系统中的应用[J].浙江大学学报(工学版),2005,39(8):1156-1159. 被引量:10
  • 6石喜光,郑立刚,周昊,陈习珍,邱坤赞,岑可法.基于广义回归神经网络与遗传算法的煤灰熔点优化[J].浙江大学学报(工学版),2005,39(8):1189-1192. 被引量:9
  • 7SHI Xi-guang,ZHENG Li-gang,ZHOU Hao,et al.Combining general regression neural network and genetic algorithm to optimize ash fusion temperature[J].Journal of Zhejiang University:Engineering Science,2005,39 (8):1156-1159.
  • 8SABLANI S S,RAHMAN M S.Using neural networks to predict thermal conductivity of food as a function of moisture content,temperature and apparent porosity[J].Food Research International,2003,36 (6):617-623.
  • 9SABLANI S S,BAIK O D,MARCOTTE M.Neural networks for predicting thermal conductivity of bakery products[J].Journal of Food Engineering,2002,52(2):299-304.
  • 10YU Zi-tao.Experimental and theoretical investigation on heat and mass transfer in wood prior to fire.

二级参考文献28

  • 1傅建中,陈子辰.精密机械热动态误差模糊神经网络建模研究[J].浙江大学学报(工学版),2004,38(6):742-746. 被引量:37
  • 2张春慨,王亚英,李霄峰,邵惠鹤.混沌在实数编码遗传算法中的应用[J].上海交通大学学报,2000,34(12):1658-1660. 被引量:9
  • 3周昊,郑立刚,樊建人,岑可法.广义回归神经网络在煤灰熔点预测中的应用[J].浙江大学学报(工学版),2004,38(11):1479-1482. 被引量:31
  • 4陈文敏,姜宁.煤灰成分和煤灰熔融性的关系[J].洁净煤技术,1996,2(2):34-37. 被引量:47
  • 5周明.遗传算法及其应用[M].北京:电子工业出版社,1999..
  • 6许大中.交流电机调速理论[M].杭州:浙江大学出版社,1994..
  • 7CHEN J, SHI Y, SHI S. Noise analysis of digital ultrasonic nondestructive evaluation system[J]. The International Journal of Pressure Vessels and Piping, 1999,76(9): 619-630.
  • 8GUSTAFSSON, MATS G, STEPINSKI T. Studies of split spectrum processing, optimal detection, and maximum likelihood amplitude estimation using a simple clutter model[J]. Ultrasonics, 1997,35(1): 31-52.
  • 9DRAI R, BENAMMAR A, BENCHAALA A. Signal processing for the detection of multiple imperfection echoes drowned in the structural noise[J]. Ultrasonics, 2004, 42(9): 831-835.
  • 10NEWHAUSE V L, BILGUATY N M. Flaw-to-grain echo enhancement by split-spectrum processing[J]. Ultrasonics, 1982,20(2): 59-68.

共引文献20

同被引文献128

引证文献9

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部