期刊文献+

公钥密码如何应对量子计算的挑战? 被引量:2

How Public Key Cryptosystem Confronts the Challenge from Quantum Computing?
原文传递
导出
摘要 文中介绍了量子计算对公钥密码的威胁,具有"抗量子计算"性质的公钥密码体制的竞争态势和发展思路。 This paper discusses the potential threat on public key cryptosystem by quantum computing, and the competition and development of public key cryptosystem featuring anti-quantum computing.
作者 管海明
出处 《信息安全与通信保密》 2007年第8期53-54,共2页 Information Security and Communications Privacy
关键词 公钥密码体制 量子计算 Shor量子算法 数字签名 基于身份 public key cryptosystem quantum computing Shor' s quantum algorithm digital signature identity-based
  • 相关文献

参考文献6

  • 1[1]Shor P W.Algorithms for Quantum Computation:Discrete Log and Factoring.Proceedings of the 35th Symposium on Foundations of Computer Science[C].1994,124~134.
  • 2陆晓亮,胡苏太.量子计算机的发展现状及趋势[J].高性能计算发展与应用,2006,(1):7-11.
  • 3唐川.16量子位量子计算机问世[J].中国科学院国家科学图书馆《科学研究动态监测快报》,2007,(4):1-3.
  • 4[4]Hoffstein J,Pipher J,Silverman J H.NTRU:ARing based Public Key Cryptosystem.Proc.of ANTS Ⅲ,LNCS 1423,pp.267-288.Springer-Verlag,1998.Crypto' 96.
  • 5[5]Okamoto T,Tanaka K,Uchiyama S.Quantum Public-Key Cryptosystems[A].CRYPT02000[C].LNCS 1880,,2000.147-165.
  • 6[6]Christopher Wolf.Multivariate Quadratic Polynomials in Public Key Cryptography.Katholieke Universiteit Leuven,Belgium,ISBN 90-5682-649-2,2005.

共引文献2

同被引文献45

  • 1唐樨瑾,冯勇.Dixon结式在密码学中的应用[J].软件学报,2007,18(7):1738-1745. 被引量:9
  • 2SHOR P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[ J]. SIAM J Computer, 1997(5): 1484-1509.
  • 3DING J T. Multivariate public key cryptosystems[ M]. Berlin: Springer-Verlag, 2006: 1-10.
  • 4GAREY M, JOHNSON D. Computers and intractability, a guide to the theory of NP-completeness[ M]. New York: Freeman, 1979: 128-130.
  • 5PATARIN J, GOUBIN J. Trapdoor one-way permutati-ons and multivariate polynomials [ C] // Proceedings of ICISC 1997. Berlin: Springer-Verlag, 1997 : 356-368.
  • 6PATARIN J. Hidden field equations (HFE) and isomorphisms of polynomials (IP): two new families of asymmetric algorithms[ C]//Proceedings of Eurocrypt 1996. Berlin: Springer-Verlag, 1996 : 33-48.
  • 7FAUGERE J C. A new efficient algorithm for computing Grobner bases without reduction to zero (F5) [ C ] //Proceedings of ISSAC2002. New York: ACM Press, 2002: 75-83.
  • 8FAUGERE J C, JOUX A. Algebraic cryptanalysis of hidden field equations (HFE) using Grobner bases[ C]//Proceedings of Crypto 2003. Berlin: Springer-Verlag, 2003: 44-60.
  • 9COURTOIS N T, KLIMOV A, PATARIN J, et al. Efficient algorithms for solving overdefined systems of multivar-iate polynomial equations[ C ]//Proceedings of Eurocrypt 2000. Berlin: Springer-Verlag, 2000: 392-407.
  • 10COURTOIS N, PIEPRZYK J. Cryptanalysis of block ciphers with overdefined systems of equations [ C ] //Proceedings of Asiacrypt 2002. Berlin: Springer-Verlag, 2002 : 267-287.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部