摘要
在MRI图像中,颅内各组织的边界极其复杂且不规则,这对传统的分割算法提出严峻的挑战。主成份分析(PCA)可达到降维和消除冗余信息的目的,为使支持向量机(SVM)准备的样本空间更为紧凑、合理。本研究采用PCA将图像的57维特征向量处理后,研究多分类SVM对MRI图像进行多目标分割,成功提取颅内各组织不规则边界。理论和实验表明,基于PCA和SVM相结合的分割性能优于仅采用SVM的分割性能。
In MRI image, the boundary of each encephalic tissue is very complicated and irregular. It is a big challenge to the traditional segmentation algorithms. Principal Component Analysis (PCA) can realize dimension reduction and eliminate redundant information, make the sample space for Support Vector Machine (SVM) more compact and reasonable. In this paper, PCA was used to process 57 dimensional feature vectors of image and the segmentation of multi-target MRI image based on multi-classification SVM was investigated. The result showed that the irregular boundary of each eneephalic tissue was extracted successfully. The theory analysis and experimental results indicated that the segmentation based on PCA and SVM displayed better performance than the segmentation based on SVM only.
出处
《中国生物医学工程学报》
CAS
CSCD
北大核心
2007年第4期498-502,516,共6页
Chinese Journal of Biomedical Engineering
基金
河北省自然科学基金(E2006000034)
高等学校博士学科专项科研基金(20040080008)。
关键词
主成份分析
支持向量机
图像分割
principal component analysis
support vector machine
image segmentation