期刊文献+

基于主成份分析和支持向量机的MRI图像多目标分割 被引量:3

The Segmentation of Multi-target MRI Image Based on Principal Component Analysis and Support Vector Machine
下载PDF
导出
摘要 在MRI图像中,颅内各组织的边界极其复杂且不规则,这对传统的分割算法提出严峻的挑战。主成份分析(PCA)可达到降维和消除冗余信息的目的,为使支持向量机(SVM)准备的样本空间更为紧凑、合理。本研究采用PCA将图像的57维特征向量处理后,研究多分类SVM对MRI图像进行多目标分割,成功提取颅内各组织不规则边界。理论和实验表明,基于PCA和SVM相结合的分割性能优于仅采用SVM的分割性能。 In MRI image, the boundary of each encephalic tissue is very complicated and irregular. It is a big challenge to the traditional segmentation algorithms. Principal Component Analysis (PCA) can realize dimension reduction and eliminate redundant information, make the sample space for Support Vector Machine (SVM) more compact and reasonable. In this paper, PCA was used to process 57 dimensional feature vectors of image and the segmentation of multi-target MRI image based on multi-classification SVM was investigated. The result showed that the irregular boundary of each eneephalic tissue was extracted successfully. The theory analysis and experimental results indicated that the segmentation based on PCA and SVM displayed better performance than the segmentation based on SVM only.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2007年第4期498-502,516,共6页 Chinese Journal of Biomedical Engineering
基金 河北省自然科学基金(E2006000034) 高等学校博士学科专项科研基金(20040080008)。
关键词 主成份分析 支持向量机 图像分割 principal component analysis support vector machine image segmentation
  • 相关文献

参考文献8

二级参考文献36

  • 1毕英伟,邱天爽,李小兵,刘颖.医学超声图像分析的研究进展[J].国外医学(生物医学工程分册),2005,28(1):14-19. 被引量:5
  • 2[1]DeRisi JL, Iyer VR, Brown PO. Exploring the metabolic and genetic control of gene expression on a genomicscale[J]. Science,1997,278:680-685.
  • 3[2]Golub TR, et al. Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring[J]. Science, 1999,286:531-537.
  • 4[3]Eric P. Xing, Michael I. Joran, Richard M. Karpy. Feature Selection for High-Dimensional Genomic Microarray Data, International conference on machine learning[R]. 2001.
  • 5[4]John G, Kohavi, Pfleger K. Irrelevant features and the subset selection problem in W.W.Cohen & H.Hirsh(eds), Machine Learning: Proceedings of the 11th International Conference[R]. CA,1994,121-129.
  • 6[5]Xia Li, et al. An ensemble method for gene discovery based on DNA microarray data[J]. SCIENCE IN CHINA(Series C).2004,47(1).
  • 7[6]Cristianini N, Shawe-Taylor J. An Introduction to Spport Vector Machines[M]. Cambridge University Press. Cambridge. www.support-vector.net.
  • 8[7]Brown, MPS, Grundy WN, Lin D, et al. Support Vector Machine Classification of Microarray Gene Expression Data[M].1999,Technical Report USCC-CRL-99-09. Available at: http://www.cse.ucsc.edu/research/compbio/genex.
  • 9[8]Alon U, Barkai N, Notterman D, et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon cancer tissues probed by oligonucleotide arrays[J]. Proc Natl Acad Sci USA, 1999,96:6745-6750.
  • 10Perona P,Malik J.Scale-space and Edge Detection Using Anisotropic Diffusion[J]. IEEE Trans.Partem Anal.Mach.Intell. 1990,12:629-639.

共引文献42

同被引文献24

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部