期刊文献+

连续预测脑机接口的信息积累方法 被引量:1

Accumulate Information for Continuous Prediction in Brain-Computer Interface
下载PDF
导出
摘要 设计有效的学习算法快速准确地对脑电信号进行连续预测是脑机接口研究的关键之一。本研究给出了一种基于变分贝叶斯算法的理论框架通过区分度权值进行信息积累,从而对脑电信号分类。此方法将对区分度权值和分类器参数的估计融为一体,使得这两部分在学习的过程中可以互相协调。在两个运动想象数据集上的实验结果表明本方法能够提高BCI系统的性能,具有较好的实用性。 To develop effective learning algorithms for fast and accurate continuous prediction using Electroencephalogram (EEG) signal is a key issue in Brain-Computer Interface ( BCI). This paper presented a unified framework based on variational Bayesian method to classify EEG trial by accumulating the predictions of segments according to the discriminative powers during a trial. The presented method unified the estimations of discriminative powers and classifier parameters into a whole process, which made the two parts cooperate with each other. The experimental results on two motor imagery datasets have shown that the presented method improves the performance of BCI system and is suitable for online application.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2007年第4期523-527,共5页 Chinese Journal of Biomedical Engineering
关键词 脑机接口 脑电信号 连续预测 变分贝叶斯方法 贝叶斯学习 brain-computer interface EEG continuous prediction variational Bayesian method Bayesian learning
  • 相关文献

参考文献9

  • 1Wolpaw JR,Birbaumer N,MacFarland DJ,et al.Brain-computer interfaces for communication and control[J].Clin Neurophyiol,2002,113:767-791.
  • 2Roberts SJ,Penny WD.Real-time Brain Computer Interfacing:a preliminary study using Bayesian learning[J].Medical and Biological Engineering and Computing,2000,38(1):56-61.
  • 3Blanchard G,Blankertz B.BCI Competition 2003-Data Set Ⅱa:spatial Patterns of Self-Controlled Brain Rhythm Modulations[J].IEEE Trans Biomed Eng.,2004,51(6):1062-1066.
  • 4Lemm S,Schafer C,Curio G.BCI Competition 2003-Data Set Ⅲ:Probabilistic Modeling of Sensorimotor μ Rhythms for Classification of Imaginary Hand Movements[J].IEEE Trans Biomed Eng,2004,51(6):1077-1080.
  • 5Attias H.Inferring parameters and structure of latent variable models by variational Bayes[A].In Proc 15th Annu Conf Uncertainty in Artificial Intelligence[C].San Francisco,CA:Morgan Kaufmann Publishers,1999.21-30.
  • 6Bishop CM.Neural Networks for Pattern Recognition[M].Oxford:Oxford University Press,1995.
  • 7MacKay DJC.Bayesian interpolation[J].Neural Computation,1991,43:415-447.
  • 8MacKay DJC.The evidence framework applied to classification networks[J].Neural Computation,1991,45:689-714.
  • 9McFarland DJ,Wolpaw JR.EEG-based communication and control:speed-accuracy relationships[J].Appl Psychophysiol Biofeedback,2003,28:217-231.

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部