摘要
在分析子波变换的基础上,将子波理论引入神经网络,提出了一种新的神经网络模型─—子波-S型神经网络(WSNN),并将其成功地应用于动态过程的故障诊断,同时根据其特性给出训练方法, 实验证明,与S形作用函数的前向阶层型神经网络(SBFN)相比,子波-S型神经网络提高了故障早期诊断的正确诊断率。
For improving the correctness rate of dynamic fault diagnosis, a new artificial neuralnetwork——wavelet-sigmoidal function based neural network(WSNN) is proposed after introducing wavelet transforms, and is successfully applied to dynamic process fault diagnosis. The training algorithm is also presented based on its error surface properties. In this paper, WSNN is compared with the traditional sigmoidal function based neural network (SBFN) in terms of the correctness rate of fault diagnosis.
出处
《化工学报》
EI
CAS
CSCD
北大核心
1997年第1期1-7,共7页
CIESC Journal
基金
国家自然科学基金资助项目
关键词
故障诊断
子波变换
人工神经网络
动态过程
fault diagnosis, wavelet transform, artificial neural networks, dynamic process