期刊文献+

一个非线性行波方程孤立波解的存在性

Existence of Solitary Wave Solution to a Nonlinear Traveling Wave Equation
下载PDF
导出
摘要 该文研究一个非线性波动方程,提出求解波动方程孤立波存在性的有效方法.此方程是Kdv方程和MKdv方程的一个推广形式,利用一类平面自治系统同宿轨与孤立波之间的关系,通过分析的方法及动力系统分叉理论,研究了自治系统在各种参数条件下同宿轨的情况,进而研究了一个非线性波动方程孤立波的存在性. Non-linear traveling wave equation is studied, and a kind of effective methods for solitary waves solution to a non-linear traveling wave equation is presented, which is a generalized form of Kdv equation and Mkdv equation. We use the relation between homoclinic orbit and solitary waves of planar autonomy, and study homoclinic orbits of autonomous system with various parameters using the bifurcation theory of dynamical systems and an analytical method.Existence of solitary waves of the nonlinear traveling wave equation is investigated.
出处 《应用科学学报》 CAS CSCD 北大核心 2007年第4期407-410,共4页 Journal of Applied Sciences
基金 江苏省高校自然科学研究计划项目(05KJB110018)
关键词 波动方程 孤立波 同宿轨 traveling wave equation solitary wave homoclinic orbit
  • 相关文献

参考文献17

  • 1YANG Zhiyan.Application of bifurcation method for generelized MKdv equation[J].Journal of Yunnan University,2002,24 (1):16-20.
  • 2IFEED E.Nonlinear waves,soliton and chaos[M].Cambridge:Cambridge University Press,1990.
  • 3范兴华,田立新.奇异扰动MKdV-KS方程孤立波解的存在性[J].江苏大学学报(自然科学版),2003,24(5):82-84. 被引量:2
  • 4CHRISTOPHER K R T J.Geometric singular perturbation theory[J].Lecture Notes in Math,1994,1609:45-118.
  • 5郭柏灵,刘正荣.CH-r方程的尖波解[J].中国科学(A辑),2003,33(4):325-337. 被引量:16
  • 6WADATI M.Wave propagation in nonlinear lattice[J].J Phys Soc Japan,1975,38:673-686.
  • 7KONNO K.A modified Kdv equation for ion acoustics waves[J].J Phy Soc Japan,1974,37:1631-1636.
  • 8NARAYANAMURTI V.Nonlinear propagation of heat pulses in solids[J].Phys Rev Lett,1970,25:1105-1108.
  • 9ZHANG J.New solitary wave solution of the combined KdV and mKdV equation[J].Int J Theor Phys,1998,37:1541 -1546.
  • 10YU J.Exact solitary wave solutions to a combined KdV and mKdV eqation[J].Math Meth Appl Sci,2000,23:1667-1670.

二级参考文献23

  • 1Camassa R, Holm D D. An integrable shallow water equation with peaked solitons. Phys Rev Lett, 1993,71(11): 1661-1664.
  • 2Boyd J P. Peakons and coshoidal waves: travelling wave solutions of the Camassa-Holm equation. Appl Math Comput, 1997, 81(2-3): 173-187.
  • 3Cooper F, Shepard H. Solitons in the Camassa-Holm shallow water equation. Phys Lett A, 1994, 194(4):246-250.
  • 4Constantin A. Soliton interactions for the Camassa-Holm equation. Exposition Math, 1997, 15(3): 251-264.
  • 5Liu Z G, Qian T F. Peakons of the Camassa-Holm equation. Applied Mathematical Modelling, 2002, 26:473-480.
  • 6Constantin A. Quasi-periodicity with respect to time of spatially periodic finite-gap solution of the CamassaHolm equation. Bull Sci Math, 1998, 127(7): 487-494.
  • 7Constantin A. On the Cauchy problem for the periodic Camassa-Holm equation. J Differential equations,1997, 141(2): 218-235.
  • 8Dai H H, Pavlov M. Maxim transformations for the Camassa-Holm equation, its high-frequency limit and the Sinh-Gordon equation. J Phys Soc Jpn, 1998, 67(11): 3655-3657.
  • 9Fuchssteiner B. Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation. Phys D, 1996, 95(3-4): 229-243.
  • 10Kouranbaeva S. The Camassa-Holm equation as a geodesic flow on the diffeomorphism group. J Math Phys,1999, 40(2): 857-868.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部