期刊文献+

大肠埃希氏杆菌UTI89分泌蛋白组的预测分析 被引量:1

Prediction and Analysis of Secreted Proteins in Escherichia coli UTI89
下载PDF
导出
摘要 目的:从大肠埃希氏杆菌UTI89基因组中筛选出全部潜在的分泌蛋白并进行初步研究。方法:使用SignalP3.0、TatP1.0、SecretomeP2.0等蛋白分析软件对5211个ORF进行预测;对筛选出的信号肽及分泌蛋白的基本特征进行统计学分析;使用Blast2 Sequences进行同源性分析。结果:共筛选出432个sec途径分泌蛋白,19个Tat途径分泌蛋白,386个非经典分泌蛋白;信号肽、分泌蛋白平均长度分别为25.5aa、282.8aa;信号肽中出现频率最高的3种氨基酸依次为L、A、S;仅有两个信号肽的氨基酸序列完全相同,相应的分泌蛋白高度同源。结论:大肠埃希氏杆菌UTI89基因组中有837个ORF可能编码分泌蛋白;分泌蛋白集中在500aa以下;组成信号肽的氨基酸相对保守,多数为疏水氨基酸;信号肽变异性较大,含相同信号肽的蛋白可能由同源基因编码。 Objective: To identify all the potential ORFs encoding secreted proteins in Escherichia coli UTI89 genome, and to preliminarily eharaeterise the secreted proteins and the signal peptides. Methods: Entire 5211 ORFs were predicted by network softwares including SignalP3.0, TatP1.0, SecretomeP2.0, etc. The basic features of signal peptides and secreted proteins in prediction results were statistically analysed. The secreted proteins which have the same signal sequence were aligned by the programe Blast 2 Sequences. Results: 432 ORFs encoding Sec pathway secreted proteins, 19 ORFs encoding Tat pathway secreted proteins and 386 ORFs encoding non-classically secreted proteins exist in E. coli UTI89 genome. The mean length of signal peptides is 25.5 aa, and the mean length of secreted proteins is 282.8 aa. The top three frequent amino acids in signal peptides are L, A, S. Only two signal peptides have the same sequence, and the corresponding secreted proteins are highly homologous. Conclusions: 837 ORFs in E. coli UTI89 genome may encode secreted proteins. Lengths of most secreted proteins are less than 500 aa. Amino acids in signal peptides are relatively conservative, most of which are hydrophobic. Signal peptides diversify widely but the secreted proteins containing the same signal sequence are likely to be encoded by homologous genes.
作者 王黎 吉爱国
出处 《中国生物工程杂志》 CAS CSCD 北大核心 2007年第7期100-105,共6页 China Biotechnology
关键词 大肠埃希氏杆菌UTI89 分泌蛋白 信号肽 计算机预测 Escherichia coli UTI89 Secreted protein Signal peptide Computational prediction
  • 相关文献

参考文献14

  • 1王秡,张兆山.致肾盂肾炎大肠杆菌的毒力因子和调控[J].生物技术通讯,2006,17(4):609-613. 被引量:2
  • 2Stanley P,Koronakis V,Hughes C.Acylation of Escherichia coli hemolysin:a unique protein lipidation mechanism underlying toxin function.Microbiol Mol Biol Rev,1998,62(2):309-333
  • 3Falbo V,Pace T,Picci L,et al.Isolation and nucleotide sequence of the gene encoding cytotoxic necrotizing factor 1 of Escherichia coli.Infect Immun,1993,61(11):4909-4914
  • 4Toth I,Oswald E,Szabo B,et al.Virulence markers of human uropathogenic Escherichia coli strains isolated in Hungary.Adv Exp Med Biol,2000,485:335-338
  • 5Chen S L,Hung C S,Xu J,et al.Identification of genes subject to positive selection in uropathogenic strains of Escherichia coli:a comparative genomics approach.Proc Natl Acad Sci USA,2006,103(15):5977-5982
  • 6Tjalsma H,Antelmann H,Jongbloed J D,et al.Proteomics of protein secretion by Bacillus subtilis:separating the "secrets" of the secretome.Microbiol Mol Biol Rev,2004,68(2):207-233
  • 7Bendtsen J D,Kiemer L,Fausboll A,et al.Non-classical protein secretion in bacteria.BMC Microbiol,2005,5:58
  • 8DebRoy S,Dao J,Soderberg M,et al.Legionella pneumophila type Ⅱ secretome reveals unique exoproteins and a chitinase that promotes bacterial persistence in the lung.Proc Natl Acad Sci U S A,2006,103(50):19146-19451
  • 9刘玉岭,柳云帆,谢建平.粟酒裂殖酵母全基因组中含信号肽蛋白质的研究[J].遗传,2007,29(2):250-256. 被引量:8
  • 10Lee S A,Wormsley S,Kamoun S,et al.An analysis of the Candida albicans genome database for soluble secreted proteins using computer-based prediction algorithms.Yeast,2003,20(7):595-610

二级参考文献72

  • 1Derek W W, Joao C S, Rajinder K, et al. The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science,2001, 294(14): 2317 - 2323.
  • 2Emanuelsson O, Nielsen H, Brunak S, et al. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. Journal of Molecular Biology, 2000, 300:1005 - 1016.
  • 3von Heijne G. Life and death of a signal peptide. Nature, 1998,396:111 - 113.
  • 4Akita M, Sasaki S, Matsuyama S, et al. SecA interacts with secretory proteins by recognizing the positive charge at the amino terminus of the signal peptide in Escherichia coli. Journal of Biological Chemistry, 1990, 265: 8162 - 8169.
  • 5Paetzel M, Dalbey R E, Strynadka N C. Crystal structure of a bacterial signal peptidase in complex with a beta-lactam inhibitor.Nature, 1998, 396:186- 190.
  • 6Harold T, Albert B, Jan D H, et al. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiology and Molecular Biology Reviews, 2000, 9:515 - 547.
  • 7Tjalsma H, Bolhuis A, van Roosmalen M L, et al. Functional analysis of the secretory precursor processing machinery of Bacillus subtilis: identification of a eubacterial homolog of archaeal and eukaryotic signal peptidases. Genes, 1998, 12:2318 - 2331.
  • 8Tjalsma H, Kontinen V P, PragaiZ, etal. The role oflipoprotein processing by signal peptidase Ⅱ in the Gram-positive eubacterium Bacillus subtilis: signal peptidase Ⅱ is required for the efficient secretion of a-amylase, a non-lipoprotein. Journal of Biology Chemistry, 1999, 274:1698 - 1707.
  • 9Tjalsma H, Zanen G, Venema G, et al. The potential active site of the lipoprotein-specific (type Ⅱ ) signal peptidase of Bacillus subtilis . Journal of Biology Chemistry, 1999, 275: 25102- 25108.
  • 10Chung Y S, Dubnau D. ComC is required for the processing and translocation of ComGC, a pilin-like competence protein of Bacillus subtilis. Molecular Microbiology, 1995, 15:543 - 551.

共引文献28

同被引文献34

  • 1Htlckelhoven R. Transport and secretion in plant-microbe in- teractions [J]. Curr Opin Plant Biol, 2007,10(6):573-579.
  • 2van Loon L C, Bakker P A, Pieterse C M. Systemic resis-tance induced by rhizosphere bacteria[J]. Annu Rev Phyto- pathol, 2006,36:453-483.
  • 3Hogenhout S A, van der Hoorn R A, Terauchi R, et al. Emerging concepts in effector biology of plant associated or- ganisms[J]. Mol Plant Microbe Interact, 2009,22(2):115-122.
  • 4Ellis J, Rafiqi M, Gan P, et al. Recent progress in discovery and functional analysis of effector proteins of fungal and oo- mycete plant pathogens[J]. Curr Opin Plant Biol, 2009,12:399- 405.
  • 5McCann H C, Guttman D S. Evolution of the type III secre- tion system and its effectors in plant-microbe interactions[J]. New Phytol, 2008,177(1),33-47.
  • 6Block A, Li G, Fu Z Q, et al. Phytopathogen type III effec- tor weaponry and their plant targets[J]. Curt Opin Plant Biol, 2008,11,396-403.
  • 7Dou D, Kale S D, Wang X, et al. RXLR-mediated entry of Phytophthora sojae effector Avrlb into soybean cells does not require pathogen-encoded machinery[J]. Plant Cell, 2008,20(7), 1930-1947.
  • 8Houterman P M, Speijer D, Dekker H L, et al. The mixed xy- lem sap proteome of Fusarium oxysporum- infected tomato plants[J]. Mol Plant Pathol, 2007,8:215-221.
  • 9Tsang A, Butler G, Powlowski J, et al. Analytical and compu- tational approaches to define the Aspergillus niger secretome [J]. Fungal Genet Biol, 2009,46(Suppll):S153-S160.
  • 10Hirai Y, Nelson C M, Yamazaki K, et al. Non-classical ex- port of epimorphin and its adhesion to avintegrin in regula- tion of epithelial morphogenesis[J]. J Cell Sci, 2007,120(12): 2032-2043.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部