期刊文献+

对偶锥上广义线性互补问题的等价转化形式及误差界估计

A Reformulation of the Generalized Linear Complementarity Problem over A Dual Polyhedral Cone and the Error Bound Estimation
下载PDF
导出
摘要 在适当条件下将凸多面锥上的广义线性互补问题等价地转化为凸多面锥上的变分不等式问题,利用变分不等式的误差界,建立了凸多面锥上的广义线性互补问题的全局绝对误差界. In this paper, the estimation of the error bound for the generalized linear complementarity problem over a closed polyhedral cone (GLCP) was consider,and GLCP was equivalently converted into an affine variational inequalities problem over a closed polyhedral cone(AVIP) under suitable conditions,and then a global absolute error bound for GLCP establish as well.
出处 《内蒙古师范大学学报(自然科学汉文版)》 CAS 2007年第4期436-439,共4页 Journal of Inner Mongolia Normal University(Natural Science Edition)
关键词 广义线性互补问题 凸多面锥 变分不等式 全局绝对误差界 GLCP AVIP variational inequality global absolute error bound
  • 相关文献

参考文献7

  • 1Facchinei F,Pang J S.Finite-Dimensional Variational Inequalities and Complementarity Problems[M].New York:Springer,2003.
  • 2Solodov M V.Convergence rate analysis of iteractive algorithms for solving variational inequality problems[J].Math Programming,2003,96:513-528.
  • 3Mangasarian O L,Ren J.New improved error bound for the linear complementarity problem[J].Mathematical Programming,1994,66:241-255.
  • 4Pang J S.A posterriori error bound for the linearly-constrained variational inequality problem[J].Mathematics of Operations Research,1987,12:474-484.
  • 5Xiu Naihua.Global projection-type error bound for general variational inequlities[J].J Optim Theory Appl,2002,112(1):213-228.
  • 6Ferris M C,Mangasarian O L.Error bound and strong upper semicontinuity for monotone affine variational inequalities[D].Computer Sciences Department University of Wisconsin Technical Report,1992:1 056.
  • 7KindKinderlehrer D,Stampacchia G.An introduction to variational inequalities and their applications[M].New York:Academic Press,1980.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部