期刊文献+

基于模糊D-S证据论的入侵检测

Intrusion detection based on obscure D-S evidence theory
下载PDF
导出
摘要 根据操作系统的工作原理,对计算机执行程序的行为特征进行严密地入侵剖析。运用马尔可夫模型对计算机受到入侵时的状态建立合适粒度的状态知识源,采用模糊D-S证据论方法来融合所建立的状态知识源进行综合评判,解决了入侵检测过程多源数据融合常涉及到非排斥性假设和操作不确定性的数据所造成的误检和漏检率。经过实验分析,该方法有效地降低了误检和漏检率,提高了入侵检测的全面性和准确性。 Aiming at the behavior and characteristic of the computer execution of processes,take a rigorous analysis of the computer invaded based on the operation principles of the operating system.This method is to build state knowledge sources of appropriate granularity for the intrusion by using of Markov model and combine the prescriptive state knowledge sources based on the obscure dempster-shafter evidence theory.It can reduce the proportion of mistaken detection and that of missing detection of data of no exclusion hypothesis and undefined operation by the multi-sources data fusion.Through experimental analysis,this method improves the completeness and the accuracy of the invasion detection.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第22期154-157,共4页 Computer Engineering and Applications
基金 甘肃省自然科学基金(the Natural Science Foundation of Gansu Province of China under Grant No.ZS021-A25-018-G)。
关键词 入侵检测 马尔可夫模型 D-S证据理论 数据融合 intrusion detection Markov model D-S evidence theory data fusion
  • 相关文献

参考文献6

  • 1Han Sang-Jnn,Cho Sung-Bae.Detecting intrusion with rule-based integration of multiple modds[J].Computers&Security,2003,22(7):613-623.
  • 2陈望斌,王力生,廖根为.基于序列模式挖掘的入侵检测技术研究[J].小型微型计算机系统,2004,25(5):878-881. 被引量:11
  • 3Li Zhi-tang,Li Jia-chun.Fuzzy neural network in intrusion detection system[J].M ini-Micro Systems,2002,23(10):1235-1238.
  • 4Dempster A.Upper and lower pmbabilities induced by multivalued mapping[J].Annals of Mathematical Statistics,1967,38(2):325-339.
  • 5张尧学.计算机操作系统教程[M].北京:清华大学出版社,2002.
  • 6MIT Lincoln Labs.DARPA intrusion detection evaluation[EB/OL].http://www.Ll.mit.edu/IST/ideval/index.html.

二级参考文献5

  • 1[1]Lee W and Stolfo S J. Data mining approaches for intrusion detection [C]. Proceedings of the 7th USENIX Security Symposium, 1998, (1):26~29.
  • 2[3]Lee W,Stolfo S J and Mok K W. A data mining framework for building intrusion detection models[J]. IEEE Symposium on Security and Privacy, 1999.
  • 3[4]Han J, Dong G and Yin Y. Efficient mining of partial periodic patterns in time series database[C]. Proc Int. Conf on Data Engineering(ICDE99) ,March 1999,105~ 115.
  • 4[5]Han J, Gong W and Yin Y. Mining segmen-wise periodic patterns in time-related database [C]. In:Proc, 1998 Int ′ l Conf. On Knowledge Discovery and Data Mining (KDD98), 1998, 214 ~218.
  • 5杨向荣,宋擒豹,沈钧毅.基于数据挖掘的智能化入侵检测系统[J].计算机工程,2001,27(9):17-18. 被引量:31

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部