摘要
行进了可压缩球涡和平面激波相互作用的数值研究。一方面,用非定常Euler方程数值模拟了一种可压缩球涡的自身演化,同时,利用Rankine-Hugoniot关系,在流场中嵌入运动激波,求解了激波-球涡相干的流动过程。通过改变激波强度Ms和旋涡强度Mv,研究了激波-球涡相互作用的参数依赖关系。结果表明:对于不同的参数范围,波-涡相干的流场结构也出现几种不同的形式。其中,强激波和强涡球的相互作用会导致激波分叉和旋涡强烈畸变等复杂流动现象。
The interaction of a planar shock wave with a spherical vortex was numerically investigated by solving the unsteady Euler equations using the finite difference method. A compressible spherical vortex was constructed by time-advancing the equations of motion with properly prescribed initial conditions. The planar shock wave was set at a position initially far upstream to the vortex and then moved toward the vortex with its plane perpendicular to the vortex axis. Different regimes of the shock-vortex interactions were observed during the processes of time progressing in the different ranges of shock Mach number and vortex strength. In particular, the shock-branching and dramatic vortex deformation were observed for the cases of strong shock-vortex interactions.
出处
《空气动力学学报》
CSCD
北大核心
1997年第1期94-101,共8页
Acta Aerodynamica Sinica
基金
国家自然科学基金
国家教委基金
关键词
激波
旋涡
有限差分
数值模拟
球涡
shock wave
vortex
finite difference method
numerical simulation