期刊文献+

基于多特征背景模型的运动目标检测算法 被引量:4

An Algorithm of Motion Detection Based on the Multi-Feature Background Model
下载PDF
导出
摘要 运动目标检测是视频处理的基础,而目标的阴影在很大程度上影响了目标的真实形状,干扰了真实目标的检测。本文提出了一个以混合高斯模型为基础,结合多特征的运动目标检测方法。将阴影消除算子、帧差、方差及彩色信息融合到背景模型中,能较准确地检测运动目标并消除阴影的影响。 Motion detection is the basis of video processing. The shape ot an object is attected mostly by xts shadow, by which the true object detection is interfered. In this paper, a multi-feature motion detection method is put forth based on the hybrid Gaussian model. By putting the shadow elimination operator, frame difference, variance and color information into the background model, a moving object can be detected more correctly by the method and the effect of shadow can be eliminated.
出处 《计算机工程与科学》 CSCD 2007年第8期40-42,共3页 Computer Engineering & Science
关键词 混合高斯模型 运动检测 阴影 hybrid Gaussian model motion detection shadow
  • 相关文献

参考文献7

  • 1Stauffer C,Grimsonv.W.Learning Pattern of Activity Using Real-Time Tracking[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2000,22(8):747-757.
  • 2Power P W,Schoonees J A.Understanding Background Mixture Models for Foreground Segmentation[A].Proc of Image and Vision Computing[C].2002.267-271.
  • 3张旭东,钱玮,高隽,方廷健.视频图像中运动目标的实时检测[J].系统工程与电子技术,2005,27(3):419-421. 被引量:7
  • 4Monnet A,Mittal A,Paragios N,et al.Background Modeling and Subtraction of Dynamic Scenes[A].Proc of the 9th IEEE Int'l Conf on Computer Vision[C].2003.1305-1312.
  • 5Jiang C,Ward M O.Shadow Identification[A].Proc of IEEE Computer Society Conf on Computer Vision and Pattern Recognition[C].1992.606 612.
  • 6Nadimi S,Bhanu B Physical Models for Moving Shadow and Object Detection in Video[J].IEEE Trans on Pattern Analvsis and Machine Intelligence,2004,26(8):1079-1087.
  • 7Prati A,Mikic I,Trivedi M,et al.Detecting Moving Shadows:Algorithms and Evaluation[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2000,25(7):918-923.

二级参考文献6

  • 1Christof Ridder, Olaf Munkelt, Harald Kirchner. Adaptive background estimation and foreground detection using Kalman-filtering[ J]. Proceedings of lntemational Conference on recent Advances in Mechatronics, ICRAM'95, UNESCO Chair on Mechatronics, 1995. 193 - 199.
  • 2Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society,1977, 39(B): 1-38.
  • 3Harville M, Gordon G, Woodfill J. Foreground segmentation using adaptive mixture models in color and depth[J]. Workshop on Detection and Recognition of Events in Video, 2001.
  • 4Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking[J]. CVPR'99, 1999(2):246-252.
  • 5魏武,张起森,王明俊,黄中祥.基于计算机视觉和图像处理的交通参数检测[J].信息与控制,2001,30(3):257-261. 被引量:45
  • 6陈坚,李在铭.实时场景中多目标运动变化检测和空域定位方法[J].系统工程与电子技术,2003,25(2):143-146. 被引量:6

共引文献6

同被引文献25

  • 1代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 2龚永义,罗笑南,黄辉,廖国钧,张余.基于单水平集的多目标轮廓提取[J].计算机学报,2007,30(1):120-128. 被引量:22
  • 3何传江,唐利明.几何活动轮廓模型中停止速度场的异性扩散[J].软件学报,2007,18(3):600-607. 被引量:23
  • 4张凯.视频运动检测算法的研究和分析[J].辽宁工学院学报,2007,27(1):26-28. 被引量:8
  • 5康晓晶,吴谨.基于高斯背景建模的目标检洲技术[J].液品与显示.2010(3):454-459.
  • 6Vallejo I), Albusac J, Jimenez I: A Cognitive Surveillance System for I)etecting Incorrect Traffic Behaviors[J]. Expert Systems with Applications, 2009,36(7) : 10503-10.511.
  • 7Power P W, Schoonees J A. Understanding Background Mixture Models for Foreground Segmentation[C] : "Proceedings Image and Vision Computing New Zealand. Auckland: [s. n. ]. 2002:267- 271.
  • 8Loza A,Mihaylova L. Structural similarity-based object tracking in multimodality surveillance videos[J].Machine Vision and Applica-tions,2009,(2):71-83.
  • 9Xu Tao. A Fast and Robust Pedestrian Detection Framework Based on Static and Dynamic Information[A].{H}IEEE,2012.242-247.
  • 10Tan T N,Sullivan G D,Baker K D. Model-based localization and recognition of road vehicles[J].{H}International Journal of Computer Vision,1998,(1):5-25.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部