摘要
针对局域线性预测方法本质上是用较简单的非线性函数来预测高度非线性的混沌时间序列的不足,提出了一种基于核函数的局域线性自适应预测算法。该算法利用包含了相空间中邻近点之间的相对距离信息的核函数,将相空间中的邻近点投影到更高维的非线性核空间,在高维(甚至无穷维)的核空间用线性自适应算法预测混沌时间序列,相当于在原混沌相空间用高度非线性的函数预测高度非线性的混沌时间序列,可获得更好的预测结果。给出了应用该方法的具体步骤,通过仿真实验证明了该算法的有效性。
Aiming at the disadvantage that the local linear predictor estimates the high complicated nonlinear chaotic time series by the simple nonlinear function, a novel local linear prediction method based on the kernel function is presented. The proposed algorithm projects the points in the phase space into the higher-dimension kernel space by the kernel function, and estimates the chaotic time series in the higher dimension kernel space by an adaptive predictor. The proposed method is equivalent to estimate high-complicated nonlinear chaotic series by high-complicated nonlinear function in the origin phase space, and can predict chaotic sequence more exactly. The experiment shows that the proposed method is effective.
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2007年第7期1037-1040,共4页
Systems Engineering and Electronics
基金
国家"863"高技术研究发展计划资助课题(2004AAXX5071)
关键词
混沌
时间序列预测
核函数
自适应
chaotic
time series prediction
kernel function
adaptive