摘要
从时滞离散广义大系统的满足容许条件的孤立子系统出发,利用李雅普诺夫方法,通过对关联矩阵、输入矩阵和非线性项加上范数有界约束条件,分别研究了时滞离散广义大系统的线性情形和非线性情形的稳定性问题。给出了时滞离散广义大系统的线性情形和非线性情形的稳定性判据,并且得到了关联稳定参数域。最后用数值例子说明所得稳定性判据的实用性和有效性。
The problem of stability for linear discrete singular large-scale systems with time-delay and nonlinear ones is respectively investigated by the Lyapunov method. Under the condition that all the isolated subsystems are admissible and the interconnecting matrices, input matrices and nonlinear parts are bounded in the sense of matrix spectrum, the criteria are presented to determine whether the discrete singular large-scale systems with time-delay are stable and the interconnecting parameter regions of stability for the system are obtained as well. Finally two numerical examples are given to verify the feasibility and effectiveness of the criteria.
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2007年第7期1126-1130,共5页
Systems Engineering and Electronics
基金
国家自然科学基金资助课题(60574011)