期刊文献+

水平集方法中窄带构造技术 被引量:2

Study on the narrow band's construction for the level set method
下载PDF
导出
摘要 提出了距离模板方法并从时间复杂度、窄带宽度以及零水平集点数对窄带生成的影响等方面与快进方法、快速扫描方法进行了比较;在分析快进方法的基础上,给出了一种窄带构造算法;改进了全局快速扫描算法,以用于生成窄带。2D图像分割与3D表面重建的仿真实验表明,距离模板方法能够较快地分割图像;快进和快速扫描方法适合于表面重建等3D应用。 The narrow band level set method is a kind of technique which tracks the evolving interface. Its computation domain is set near the zero level set. The distant template method (DTM) is proposed and compared with the fast marching method (FFM) and fast sweep method on time complexity, the effects of the width and the number of points with zero level on the narrow band' s construction. On the basis of analyzing FFM, a method with O(n) time complexity is given to construct the narrow band. The fast sweep method (FSM) is improved for the narrow band' s construction. The simulation experiments of 2D image segmentation and 3D surface reconstruction demonstrate that the DTM can segment the images efficiently and FFM and FSM are suitable for 3D application such as surface reconstruction with level set method.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2007年第7期1201-1204,共4页 Systems Engineering and Electronics
基金 香港特区政府研究资助局资助课题(CUHK/4180/01E CUHK1/00C)
关键词 窄带构造 距离模板方法 快进方法 快速扫描方法 水平集方法 narrow band's construction distance template method fast marching method fast sweep method level set method
  • 相关文献

参考文献12

  • 1Osher S,Sethian J A.Fronts propagating with curvature dependent speed:algorithms based on the Hamilton-Jacobi formulation[J].Journal of Computational Physics,1988,79:12-49.
  • 2Malladi R,Sethian J A.Image processing:Flows under rain/max curvature and mean curvature[J].Graphics Models Image Processing,1996,58(2):127-141.
  • 3Malladi R,Sethian J A.Shape modeling with front propagating:a level set approach[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,1995,17(Z):158-175.
  • 4Bertalmio M,Sapiro G,Randall G.Region tracking on level set methods[J].IEEE Transactions on Medical Imaging,1999,18(5):448-451.
  • 5Paragios N,Deriche R.Geodesic active contours and level sets for the detection and tracing of moving objects[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(3):266-280.
  • 6Sethian J A.Level set method and fast marching method[M].Cambridge:Cambridge University Press,1999.
  • 7Sussman M.Smereka P,Osher S,An improved level set method for incompressible two-phase flow[J].J.Comp.Phys.,1994,114:146-159.
  • 8Adalsteinsson D,Sethian J A.The fast construction of extension velocities in Level Set methods[J].Journal of Computational Physics,1999,148(1):2-22.
  • 9Richard Tsai Yen-Hsi.Rapid and accurate computation of the distance function using grids[J].Journal of Computational Physics,2002,178(1):175-195.
  • 10Adalsteinsson D,Sethian J A.A fast level set method for propagating interfaces[J].Journal of Computational Physics,1995,118(2):269-277.

二级参考文献21

  • 1Osher, S.,Sethian,J.A.Fronts propagating with curvature dependent speed:algorithms based on the Hanilton-Jacobi formulation[J].Journal of Computational Physics, 1988,79:12-49.
  • 2Adalsteinsson,D.,Sethian,J.A. A fast level set method for propagating interfaces[J].Journal of Computational Physics,1995,118 (2): 269-277.
  • 3Xu C,Prince J L. Snakes,shapes and gradient vector flow[J]. IEEE Trans on Imaging Processing. 1998, 7(3):359-369.
  • 4Adalsteinsson,D.,Sethian,J.A.The fast construction of extension velocities in Level Set methods [J]. Journal of Computational Physics,1999,148(1): 2-22.
  • 5Peng,Dan-ping,Merriman,Barry et al.A PDE-based fast local level ser method[J]. Journal of Computational Physics, 1999,155(2): 410-438.
  • 6Malladi ,R., Sethian,J.A.Shape modeling with front propagating:a level set approach[J]. IEEE Trasacfion on Pattern Analysis and Machine Intelligence, 1995, 17(2): 158-175.
  • 7V Caselles, R Kimmel, G Sapiro. Geodesic active contours[J]. LJCV,1997, 22: 61-79.
  • 8Nikos Paragios, Rachid Detiche. Coupled geodesic active regions for image segmentation:A level set approach[A]. In Proceeding of 6^th Eur. Conf. on Computer Vision[C]. Dublin, 2000: 224-240.
  • 9Leventn,M.E.,Grimson,W.E.L.,Faugeras,O.Statistical shape influence in geodesic active contours[A]. In Proc. Conf. Computer Vision and Pattern Recognition[C] Hilton Head Island,June 2000,1.316-323.
  • 10Suri,J.S,Leaking prevention in fast level sets using fuzzy models:An application in MR brain[A]. In Proc. Int. Conf. Inform. Technol.Biomedicine[C]. Nov.2000. 220-226.

共引文献18

同被引文献13

  • 1Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models [ J ] . international Journal of Computer Vision. 1988,1(4): 321 -331.
  • 2Chan T F, Vese L A. Active contours without edges [J].IEEE Transactions on Image Processing. 2001,10(2) : 266 -277.
  • 3Li C, Xu C, Gui C, et al. Level set evolution without re- initialization: A new variational formulation: 2005 IEEE Computer Society Conference on Computer Vision and Pat- tern Recognition,2005 [ C]. Los Alamitos , CA, USA : Ieee, 2005 : 430 - 436.
  • 4李俊,杨新.图像偏微分方程的原理与应用.上海:上海交通大学出版,2003.
  • 5Xu C, Yezzi Jr A, Prince J L. On the relationship between parametric and geometric active contours: 34th Asilomar Conference,2oo0 [ C]. Pacific Grove, CA, United States: IEEE,2000:483 -489.
  • 6Shi Y, Karl W C. Real-time tracking using level sets: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005 [ C J. San Diego, CA, United States: Institute of Electrical and Electronics Engineers Computer Society, 2005 : 34 - 4l.
  • 7Perona P, Malik 1. Scale-space and edge detection using anisotropic diffusion [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1990, 12 (7): 629 - 639.
  • 8王琪,丁辉,张伟,王广志.利用分区处理和水平集算法分割序列三维乳腺MRI[J].清华大学学报(自然科学版),2009(3):419-423. 被引量:5
  • 9柳周,李宏伟.窄带水平集方法[J].计算机工程与设计,2009,30(14):3348-3351. 被引量:4
  • 10周力,闵海.基于局部连接度和差异度算子的水平集纹理图像分割[J].中国图象图形学报,2019,24(1):39-49. 被引量:12

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部