摘要
This review focuses on the contribution of electron tomography-based techniques to our understanding of cellular processes in plant cells. Electron microscopy techniques have evolved to provide better three-dimensional resolution and improved preservation of the subcellular components. In particular, the combination of cryofixation/freeze substitution and electron tomography have allowed plant cell biologists to image organelles and macromolecular complexes in their native cellular context with unprecedented three-dimensional resolution (4-7 nm). Until now, electron tomography has been applied in plant cell biology for the study of cytokinesis, Golgi structure and trafficking, formation of plant endosome/prevacuolar compartments, and organization of photosynthetic membranes. We discuss in this review the new insights that these tomographic studies have brought to the plant biology field.
This review focuses on the contribution of electron tomography-based techniques to our understanding of cellular processes in plant cells. Electron microscopy techniques have evolved to provide better three-dimensional resolution and improved preservation of the subcellular components. In particular, the combination of cryofixation/freeze substitution and electron tomography have allowed plant cell biologists to image organelles and macromolecular complexes in their native cellular context with unprecedented three-dimensional resolution (4-7 nm). Until now, electron tomography has been applied in plant cell biology for the study of cytokinesis, Golgi structure and trafficking, formation of plant endosome/prevacuolar compartments, and organization of photosynthetic membranes. We discuss in this review the new insights that these tomographic studies have brought to the plant biology field.
基金
Supported by US National Foundation grant MCB-0619736 to MSO