期刊文献+

数据仓库技术在现代化支付系统数据分析中的应用 被引量:1

Technology of Data Warehouse Applied in Data Analysis for China National Automatic Payment System
下载PDF
导出
摘要 为了满足中央银行各级决策者对支付清算业务进行各种分析的需要,针对中国现代化支付系统的特点,本文提出了在建立数据仓库的基础上应用数据挖掘技术,来达到对支付清算业务进行多层次、多角度分析的目的,为科学决策提供了有效的技术手段。文中讨论了支付系统的一个数据仓库模型,并应用k-means聚类分析算法在支付系统资金源数据挖掘方面作了一些探讨。 According the characters of China National Automatic Payment System, the technique of data mining applied based ondata warehouse is brought forward in this article to meet the demands of different decision- makers in analyzing payment andsettlement business in the central bank. The method in this article afforded an effectual technical way for leaders to makescientific decision by reaching different points of view to the payment and settlement business. In this paper, a model of datawarehouse about the capital source in China National Automatic Payment System was discussed as well as the K ?meansclustering algorithm applied in this model.
作者 陈斌
出处 《微型电脑应用》 2007年第6期56-58,61,共4页 Microcomputer Applications
关键词 数据仓库 支付系统 K-MEANS 聚类 Data Warehouse China National Automatic Payment System K-means Clustering
  • 相关文献

参考文献6

二级参考文献14

  • 1KAUFMAN L, ROUSSEEUW PJ. Finding groups in data: An introduction to cluster analysis[ M]. New York: John Wiley & Sons,1990.
  • 2RAYMOND T NG, HAN JW. CLARANS: A method for clustering objects for spatial data mining[J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2002, 14(5): 1003 -1016.
  • 3ZHANGT, RAMAKRISHNAN R, LIVNY M. BIRCH: An efficient data clustering method for very large databases[ A]. Proceedings of the ACM SIGMOD internatioal conference on Management of data[C]. New York: ACM Press, 1996. 103 - 114.
  • 4GUHA S, RASTOGI R, SHIM K. CURE: An efficient clustering algorithm for large databases[ A]. Proceedings of the ACM SIGMOD internatioal conference on Management of data[ C]. New York: ACM Press, 1998.73 - 84.
  • 5ESTER M, HANS-PETER KRIEGEL, SANDER J, et al. A densitybased algorithm for discovering clusters in large spatial databases with noise[A]. Proceeding the 2nd international conference on Knowledge discovery and data mining(KDD) [ C]. Portland, 1996.226 - 231.
  • 6ANKERST M, BREUNIG M, HANS-PETER KRIEGEL, et al. OPTICS: Ordering points to identify the clustering structure[ A]. Proceedings of the ACM SIGMOD internatioal conference on Management of data[ C]. New York: ACM Press, 1999.49 -60.
  • 7WANG W, YANG J, MUNTZ R. STING: A statistical information grid approach to spatial data mining[ A]. Proceedings of the 23rd IEEE international conference on very large data bases[ C]. Athens,1997. 186 - 195.
  • 8AGRAWAL R, GEHRKE J, GUNOPULOS D, et al. Automatic subspace clustering of high dimensional data for data mining applications[A]. Proceedings of the ACM SIGMOD internatioal conference on Management of data[ C]. New York: ACM Press, 1998.94 - 105.
  • 9BECKMANN N, HANS-PETER KRIEGEL, SCHNEIDER R, et al.The R * - Tree: An efficient and robust access method for points and rectangles[ A]. Proceedings of the ACM SIGMOD conference on Management of data[ C]. New York: ACM Press, 1990.322 -331.
  • 10Guan Ji hong 1, Zhou Shui geng 2, Bian Fu ling 3, He Yan xiang 1 1. School of Computer, Wuhan University, Wuhan 430072, China,2.State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, China,3.College of Remote Sensin.Scaling up the DBSCAN Algorithm for Clustering Large Spatial Databases Based on Sampling Technique[J].Wuhan University Journal of Natural Sciences,2001,6(Z1):467-473. 被引量:9

共引文献21

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部