期刊文献+

Unscented粒子滤波器及其在纯方位跟踪中的应用 被引量:6

Unscented Particle Filter for Bearings-Only Tracking
下载PDF
导出
摘要 为处理纯方位跟踪(BOT)中的非线性问题,提出了一种Unscented粒子滤波(UPF)跟踪方法。在使用Unscented变换的基础上,利用UPF来加入最新的观测量并产生非线性粒子滤波(PF)的建议分布。结合纯方位跟踪模型,推导了UPF应用的具体算法步骤,使用匀速运动和机动目标两个BOT仿真实例,与其它滤波器进行了仿真对比,分析了跟踪性能和误差。仿真结果表明,对于纯方位跟踪问题,UPF不仅解决了扩展卡尔曼滤波器的线性化损失难题,而且与PF等粒子滤波器相比,具有更高的跟踪精度。 To solve the nonlinear problem in the Bearings-Only Tracking (BOT), an Unscented Particle Filter(UPF) tracking method is proposed. Based on the Unscented transformation, the UPF is used to incorporate the most current observations and to generate the proposal distribution of the nonlinear Particle Filter (PF). The specific application steps of the UPF are deduced combined with the BOT model. The comparisons are made between the UPF and other filters by simulations of the constant speed target and the maneuvering one in the BOT, where the performance and the root-mean-square error of the UPF are analyzed. The results show that the UPF not only solves the linearized loss problem in the extended Kalman filter, but also is more accurate than the PF in the BOT.
出处 《电子与信息学报》 EI CSCD 北大核心 2007年第7期1722-1725,共4页 Journal of Electronics & Information Technology
基金 国家部级基金资助课题
关键词 纯方位跟踪 粒子滤波器 建议分布 Unscented变换 Bearings-Only Tracking(BOT) Particle Filter (PF) Proposal distribution, Unscented Transformation (UT)
  • 相关文献

参考文献9

  • 1Joseph J and LaViola J.A comparison of unscented and extended Kalrnan filtering for estimating quaternion motion.Proceedings of the American Control Conference Denver,2003:2435-2440.
  • 2Arulampalam S,Maskell S,and Gordon N,et al..A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking.IEEE Trans.on Signal Processing,2002,50(2):174-188.
  • 3Gordon N,Salmond D,and Smith A F M.Novel approach to nonlinear non-Gaussian Bayesian state estimation.IEE Proc.-F.1993.140(2):107-113.
  • 4Kong A,Liu J S,and Wong W H.Sequential imputations and Bayesian missing data problems.Journal of the American Statistical Association,1994,89(4):278-288.
  • 5Crisan D and Doucet A.A survey of convergence results on particle filtering methods for practitioners.IEEE Trans.on Signal Processing,2002,50(3):736-746.
  • 6Doucet A,Freitas N D,and Gordon N.Sequential Monte Carlo Methods in Practice.New York:Springer-Verlag,2001:15-61.
  • 7Merwe R,Doucet A,and Freitas N D,et al..The unscented particle filter.Technical Report Cued/F-Infeng/Tr 380,Cambridge University Department of Engineering,2000:1-45.
  • 8巴宏欣,赵宗贵,杨飞,刘海燕.一种新的机动目标跟踪的多模型算法[J].电子与信息学报,2005,27(1):13-16. 被引量:9
  • 9Fearnhead P.Sequential Monte Carlo methods in filter theory.[Doctor degree paper],University of Oxford,1998:115-118.

二级参考文献7

  • 1Li X R. Multiple-model estimation with variable structure---Part Ⅱ: Model-set adaptation. IEEE Trans. on Automatic Contro,2000, 45(11): 2047 - 2060.
  • 2Li X R. Hybrid estimation techniques, Leondes C T. ed, Control and Dynamic System: Advances in Theory and Applications,New York: Academic, 1996, 76:213 - 287.
  • 3Li X R, Bar-Shalom Y. Design of an interacting multiple modelal gorithm for air traffic control tracking. 1EEE Trans. on Contol Systems Technology, 1993, 1(3): 186- 194.
  • 4Magill D. Optimal adaptive estimation of sampled stochastic processes. IEEE Trans. on Automatic Control, 1965, 10(4): 434- 439.
  • 5Blom H A P, Bar-Shalom Y, The interacting multiple model algorithm for systems with Markovian switching coefficients.IEEE Trans. on Automatic Control, 1988, 33(8): 780 - 783.
  • 6Li X R, Zhao Zhanlue, Zhang Peng, He Chen. Model-set design for multiple-model method. 11. Examples. in Proc. The Fifth International Conference on Information Fusion, Washington DC,USA, 2002, 2: 1347- 1354.
  • 7Jilkov V P, Angelova D S, Semerdjiev T A. Design and comparison of mode-set adaptive IMM algorithms for maneuvering target tracking. IEEE Trans. on Aerospace and Electronic Systems, 1999, 35(1):343 - 350.

共引文献8

同被引文献134

引证文献6

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部