期刊文献+

低电压芯片电泳过程中流场的模拟计算和分析 被引量:2

Fluidic Field Simulation of Separation Modeon Low Voltage Electrophoresis Chip by CoventorWare
下载PDF
导出
摘要 本文基于一种阵列电极的低工作电压电泳芯片分离模型,在其中微管道的电场模拟的基础上,结合微流体动力学特性,以分离管道侧壁排布电极并等间距施加电压,建立电泳芯片低工作电压分离过程的流场模型,利用Coventor Ware软件分析单组分和双组分试样在微分离管道中流场的模拟,发现组分在常规电压和低工作电压两种分离模式下,其迁移速度近似相等;对于双组分,分离电压可大大降低同时,还可保证原来的分离度,低电压电泳过程中,工作电压可降低至30 V.证实了阵列电极和运动梯度场实现低电压电泳的可行性和有效性. On the basis of the theory model of low voltage separation on CE chip with arrayed electrodes along both sides of the micro-channels, and electric fields simulating results in micro channel by ANSYS software and fluidic dynamics, solid model of low voltage electrophoresis with channel side arrayed electrodes was established. Low voltage was applied to arryed electrodes in the moving way with equal distance each time. CoventorWare software were used to simulate and calculate the fluidic moving in micro separating channel and the process of electrophoresis separation. Taking the signal and double components as samples in low voltage CE chip, the simulating results shown that component in the fluid moved at the almost same speed under the common CE and low voltage CE modes. While the good resolution was got under low voltage CE modes, the voltage could even decrease to 30 V. Furthermore, computer simulation results of the flow field had proved the possibility and practicality of the low voltage CE chip with side arrayed electrodes.
出处 《传感技术学报》 CAS CSCD 北大核心 2007年第8期1701-1705,共5页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金资助(90307015 20675089) 国家科技部863计划项目资助(2006AA04Z345) 国家科技部国际科技合作项目资助(2006DFA13510) 重庆市自然科学基金(CSTC-2006BA12 CSTC-2006BB7184)
关键词 低电压电泳芯片 运动场模型 电极阵列CoventorWare模拟分析 low voltage electrophoresis chip moving electric field model electrode array CoventorWare simulation
  • 相关文献

参考文献11

  • 1金亚,罗国安,王如骥.集成毛细管电泳芯片研究进展[J].色谱,2000,18(4):313-317. 被引量:13
  • 2Koppmu Carbtreehj,Manz A D.Development in Technology and Application of Microsystems[J].Current Opinion in Chemical Biology.1997,(1):410-419.
  • 3汤扬华,周兆英,叶雄英,冯焱颖,金亚.毛细管电泳芯片的制造[J].微细加工技术,2001(1):62-66. 被引量:15
  • 4Effenhauser Carlo S.Aran Paulus,Andreas Manz,et al.High-Speed Separation of Antisense Oligonucleotides on a Micromachined Capillary Electrophoresis Device[J].Analytical Chemistry.1994,66(18):2949-2953.
  • 5Harrison D J,Fluri K,Seiler K,Fan ZH,Effenhauser C S,Manz A.Micromachining a Miniaturized Capillary Electrophoresis Based Chemical Analysis System on Chip[J].Science.1993,261:895-897.
  • 6Neelesh A.Patankar,Howard H.Hu.Numerical Simulation of Electroosmotic Flow[J].Anal Chem.1998,70:1870-1881.
  • 7Fu L.-M,Yang R.-J,Lee G.-B,Liu H.-H.Electrokinetic Injection Techniques in Microfluidic Chips[J].Anal Chem.2002,74:5084-5091.
  • 8Ermakov Sergey V,Jacobson Stephen C,and Ramsey J Michael.Computer Simulations of Electrokinetic Transport in Microfabricated Channel Structures[J].Anal,Chem.1998,70:4494-4504.
  • 9吴英,温志渝,蒋子平,彭述成,黄尚廉.电泳芯片的低电压分离模型及讨论[J].光电工程,2002,29(S1):28-31. 被引量:3
  • 10李霞,温志渝,李星海,吴英,彭述成.电泳芯片的低电压分离模型及控制系统[J].微纳电子技术,2003,40(7):344-346. 被引量:4

二级参考文献47

  • 1霍洛威 游恩溥(译).玻璃的物理性质[M].北京:轻工业出版社,1985.26.
  • 2吴英 温志渝 陈刚 等.微型电泳系统分离过程的计算机模拟[J].压电与声光,2001,23(5):226-228.
  • 3Woolley A T,Anal Chem,1998年,70卷,684688页
  • 4Mangru S D,Electrophoresis,1998年,19期,23012307页
  • 5Becker H,J Micromach Microeng,1998年,8期,2428页
  • 6Zhang Y,Talanta,1998年,45期,613页
  • 7Cormick R M,Anal Chem,1997年,69卷,26262630页
  • 8Effenhauser C S,Anal Chem,1997年,69卷,34513457页
  • 9Figeys D,Anal Chem,1997年,69卷,31533160页
  • 10Kutter J P,Anal Chem,1997年,69卷,51655171页

共引文献28

同被引文献5

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部