期刊文献+

一种复杂海面背景下的红外舰船目标检测方法 被引量:7

Detection Method for IR Chip Target in Complex Sea Background
下载PDF
导出
摘要 针对传统目标检测方法只能应用在缓慢变化背景中的不足,文章从分析背景与目标的不同成像特性入手,提出了一种复杂海面背景下的红外舰船目标检测方法.该方法利用成像目标与背景的不同梯度特性,构造多向梯度检测函数来区分目标与背景,并对多向梯度算法执行结果利用灰度形态学滤波来进行背景泄漏噪声抑制.利用实际拍摄的红外图像对该算法进行了实验并与传统分法进行了比较,结果表明利用该方法能有效地检测出高起伏海面背景下的舰船目标. The traditional objects detection algorithms can only work on stationary Background. To overcome this problem, this paper gives a detection method for infrared chip target in a complex sea environment based on analysis the difference of target and background. This method constructs a multi-orientation gradient detection function to detect target from background and uses grayscale morphology method to wide off the background noise. This method is evaluated on real irffrared image. Experimental results show that this method has high performance com- pared with traditional moving objects detection algorithm and can detect the chip target easily.
出处 《传感技术学报》 CAS CSCD 北大核心 2007年第8期1934-1936,共3页 Chinese Journal of Sensors and Actuators
关键词 海面背景 目标检测 多向梯度 灰度形态学 sea background target detection multi-orientation gradient grayscale morphology
  • 相关文献

参考文献6

二级参考文献15

  • 1马治国,王江安,宗思光.海天线附近红外弱点目标检测算法研究[J].激光与红外,2004,34(5):389-390. 被引量:10
  • 2Chen K S,IEEE Trans Geosci Remote Sensing,1992年,30卷,4期,811页
  • 3Caefer C E,Silverman J,Mooney J M.Optimization of point target tracking filters[J].IEEE Trans on Aerospace and Electronic Systems,2000,36(1):15-25.
  • 4Fechner T,Hach R,Rockinger O,et al.Detection and tracking of small targets in aerial image sequences and unknown sensor motion[J].SPIE,1998,3374:259-266.
  • 5TOM V T,PELI T,LEUNG M,et al.Morphology-based algorithm for point target detection in infrared backgrounds[J].SPIE Proc,The International Society for Optical Engineering,1993,1954:2-11.
  • 6TOET A.Detection of dim point targets in cluttered maritime backgrounds through multisensor image fusion[J].SPIE Proc,Targets and Backgrounds Ⅷ:Characterization and Representation,2002,4718:118-129.
  • 7GONZALEZRC WOODSRE..数字图像处理:2版[M].北京:电子工业出版社,2002..
  • 8NAMOOS,SCHULENBURG N W.A comparison of point target detection algorithm for space-based scanning infrared sensors[J].SPIE.1995,2561:43 - 50.
  • 9杨卫平,沈振康.起伏背景下的自适应门限检测方法[J].红外与毫米波学报,1999,18(2):120-124. 被引量:23
  • 10叶增军,王江安,阮玉,邹勇华.海空复杂背景下红外弱点目标的检测算法[J].红外与毫米波学报,2000,19(2):121-124. 被引量:28

共引文献54

同被引文献33

  • 1马治国,王江安,宗思光.海天线附近红外弱点目标检测算法研究[J].激光与红外,2004,34(5):389-390. 被引量:10
  • 2蒋李兵,王壮,胡卫东.一种基于ROI的红外舰船目标检测方法[J].红外技术,2006,28(9):535-539. 被引量:7
  • 3Sungho Kiml, Taek Lyul Song, Byungin Choi, et al. Spatio-Temporal Filter Based Small Infrared Target Detection in highly Cluttered Sea Background[C]. 11 th International Conference on Control, Automation and Systems, Korea, Oct. 26 29,2011:1142- 1146.
  • 4Theo Pavlidis, Yuh-Tay Liow. Integrating Region Growing and Edge Detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(3): 225-233.
  • 5Theo Pavlidis,Yuh-Tay Liow. Integrating Region Growing and Edge Detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,(03):225-233.doi:10.1109/34.49050.
  • 6Achanta R, Hemami S, Estrada F, et al. Frequency- tuned Salient Region Detection [C]. Proc 2009 IEEE Compute Soc Conf Compute Vision and Pattern Recognition Workshop. N J: IEEE Compute Soc, 2009: 1597-1604.
  • 7Itti L, Gold C, Koch C. Visual Attention and Target Detection in Cluttered Scenes [J]. Optical Eng, 2001, 40(9): 1784-1793.
  • 8Harel J, Koch C, Perona P. Graph-based Visual saliency [J]. In NIPS, 2006, 410: 545-552.
  • 9Hou X D, Harel J, Koch C. Image Signature: High- lighting Sparse Salient Regions [J]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2012, 34(1): 194 201.
  • 10杨明月,杨卫平.复杂海天背景下红外舰船目标的自动检测方法[J].红外与激光工程,2008,37(4):638-641. 被引量:27

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部