期刊文献+

用非线性方程组求解等式约束非线性规划问题的降维算法 被引量:2

THE DESCENDING DIMENSION METHOD FOR SOLVING THE NONLINEAR PROGRAMMING PROBLEMS WITH EQUALITY CONSTRAINTS THROUGH A NONLINEAR SYSTEM OF EQUALITY
下载PDF
导出
摘要 本文研究线性和非线性等式约束非线性规划问题的降维算法.首先,利用一般等式约束问题的降维方法,将线性等式约束非线性规划问题转换成一个非线性方程组,解非线性方程组即得其解;然后,对线性和非线性等式约束非线性规划问题用Lagrange乘子法,将非线性约束部分和目标函数构成增广的Lagrange函数,并保留线性等式约束,这样便得到一个线性等式约束非线性规划序列,从而,又将问题转化为求解只含线性等式约束的非线性规划问题. The descending dimension method is studied for the nonlinear programming problems with linear and nonlinear equality constraints. Firstly, by using of the descending algorithm for the general equality constraints problems, the nonlinear progrrnming problems with only linear equality constraints are transformed into a nonlinear system of equation. And then the solution of the nonlinear programming problems is gained by solving the nonlinear system of equations. Secondly, for the nonlinear propramming problems containing both the linear and nonlinear equality constraints, augmented Lagrange function is constituted by nonlinear constraints and objective ftmction by use of adopting augment Lagrange multiplier method, and the linear eqution constraints are retained. Consequently, a sequence of nonlinear programming problems with only linear equality constraints is obtained, and then they are transformed into the nonlinear programming problems with only linear equality constraints.
出处 《经济数学》 2007年第2期208-212,共5页 Journal of Quantitative Economics
关键词 降维方法 非线性方程组 线性等式约束 非线性等式约束 增广LAGRANGE函数 Descending dimension method, nonlinear system of equations, linear equality constraints, nonlinear equality constraints, augmented Lagrange function
  • 相关文献

参考文献3

  • 1李泽民.最优化的一种新途径[J].重庆建筑工程学院学报,1990,12(1):49-55. 被引量:15
  • 2Bertsekas, D. P., Bertsekas, Constrained Optimization and Lagrange Multiplier Methods. New York: Academic Press, 1982.
  • 3温罗生,李泽民.含有线性和非线性等式约束非线性规划问题的一种降维乘子算法.中国运筹学会第七届学术交流会论文集,山东青岛,2004,1156-1161.

共引文献14

同被引文献13

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部