期刊文献+

GMW序列和WG序列及WG序列间的互相关特性 被引量:4

Cross-correlation properties between GMW and WG sequences and that of WG sequences
下载PDF
导出
摘要 对于奇数n,研究了Gordon-Mills-Welch(GMW)序列与Welch-Gong(WG)序列(及其某一采样序列)间的互相关函数以及WG序列间的互相关函数。研究表明:GMW序列与WG序列(及其某一采样序列)间的互相关函数以及WG序列间的互相关函数最终均与m-序列与其采样序列间的互相关函数相关;并且在一定条件下,WG序列间的互相关函数可为3-值或5-值的。另外,给出了GMW序列与WG序列间互相关函数的最大峰值。 For odd n, the cross-correlations between Gordon-Mills-Welch (GMW) sequences and Welch-Gong (WG) sequences (decimated WG sequences with one particular exponent) and that of WG sequences were investigated. It shows that the calculations of the cross-correlation between GMW sequences and WG sequences (decimated WG sequences with one particular exponent) and that of WG sequences were all related to the cross-correlation of m-sequences and their decimations. Moreover, the cross-correlation of WG sequences can be 3-valued or 5-valued under a certain condition. Furthermore, the maximum magnitude of the cross-correlation between GMW sequences and WG sequences were given.
作者 佟鑫 温巧燕
出处 《通信学报》 EI CSCD 北大核心 2007年第7期118-122,共5页 Journal on Communications
基金 国家自然科学基金资助项目(60373059) 国家高技术研究发展计划("863"计划)基金资助项目(2006AA01Z419) 国家自然科学基金重大研究计划基金资助项目(90604023) 教育部高等学校博士点基金资助项目(20040013007)~~
关键词 理想自相关序列 Gordon-Mills-Welch序列 Welch-Gong序列 采样 互相关函数 ideal autocorrelation sequences Gordon-Mills-Welch sequences Welch-Gong sequences decimation cross-correlation
  • 相关文献

参考文献10

  • 1GORDON B,MILLS W H,WELCH L R.Some new difference sets[J].Canadian Journal of Mathematics,1962,14:614-625.
  • 2NO J S,GOLOMB S W,GONG G,et al.Binary pseudorandom sequences of period 2m-1 with ideal autocorrelation[J].IEEE Trans Inform Theory,1998,44 (2):814-817.
  • 3DILLON J F,DOBBERTIN H.New cyclic difference sets with singer parameters[J].Finite Fields Applications,2004,10(3):342-389.
  • 4MASCHIETTI A.Difference sets and hyperovals[J].Designs Codes and Cryptography,1998,14:89-98.
  • 5GAMES R A.Crosscorrelation of m-sequences and GMW-sequences with the same primitive polynomial[J].Discrete Applied Mathematics,1985,12:139-146.
  • 6ANTWEILER M.Cross-correlation of p-ary GMW sequences[J].IEEE Trans Inform Theory,1994,40:1253-1261.
  • 7GONG G,GOMLOMB S W.The decimation-Hadamard transform of two-level autocorrelation sequences[J].IEEE Trans Inf Theory,2002,48(2):853-865.
  • 8YU Y N,GONG G.Crosscorrelation properties of binary sequences with ideal two-level autocorrelation[A].Sequences and Their Applications (SETA 2006)[C].Springer-Verlag,2006.104-118.
  • 9HERTEL D.Cross-correlation properties of perfect binary sequences[A].Sequences and Their Applications (SETA 2004)[C].Springer-Verlag,2005.208-219.
  • 10HERTEL D.Crosscorrelation between GMW and dillon-dobbertin sequences[J].IEICE Transactions on Fundamentals of Electronics,Communications and Computer Sciences,2006,E89-A(9):2264-2267.

同被引文献56

  • 1Jungnickel D, Pon A. Perfect and almost perfect sequences[ J]. Discrete Applied Mathmatics, 1999, 95 ( 1- 3) : 331-359.
  • 2Gordon B, Mills W H, Welch L R. Some new difference sets [ J]. Canadian Journal of Mathematics, 1962, 14 (4) : 614-625.
  • 3Dillon J F, Dobbertin H. New cyclic difference sets with singer parameters [ J]. Finite Fields and Their Applications, 2004, 10(3): 342-389.
  • 4No J S, Golomb S W, Gong G, et al. Binary pseudorandom sequences of period 2^m - 1 with ideal autocorrelation [J]. IEEE Trans on Inform Theory, 1998, 44(2) : 814- 817.
  • 5Maschietti A. Difference sets and hyperovals [ J ]. Designs, Codes and Cryptography, 1998, 14 ( 1 ) : 89- 98.
  • 6Gold R. Maximal recursive sequences with 3-valued recursive cross-correlation functions [ J]. IEEE Trans Inform Theory, 1968(14): 154-156.
  • 7Games R A. Cross-correlation of m-sequences and GMW- sequences with the same primitive polynomial [ J]. Discrete Applied Mathematics, 1985, 12: 139-146.
  • 8Antweiler M. Cross-correlation of p-ary GMW sequences [J]. IEEE Trans Inform Theory, 1994, 40(4): 1253- 1261.
  • 9Gong Gnang, Golomb S W. The decimation-Hadamard transform of two-level auto-correlation sequences [ J]. IEEE Trans Inform Theory, 2002, 48(4) : 853-865.
  • 10Yu Y N, Gong Guang. Cross-correlation properties of binary sequences with ideal two-level autocorrelation [ C ] //Sequences and Their Applications (SETA 2006 ). [ S.l. ] : Springer-Verlag, 2006: 104-118.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部