期刊文献+

基于特征向量场重构的虹膜识别方法 被引量:2

Iris Recognition by Restructuring Characteristic Vector Field
下载PDF
导出
摘要 受人脑工作机制的启发,提出基于特征向量场重构的虹膜识别方法.该方法首先对两幅归一化后的矩形虹膜图像,取其各自的行、列一阶差分并映射成特征向量场;其次,根据重构思想从一幅虹膜图像中取出行一阶差分,从另一幅图像中取出列一阶差分,利用二个差分重构出一个新的特征向量场.通过计算两个特征向量场的重构距离判断两幅虹膜图像的异同.与其他方法相比,该方法的优点在于不需要对虹膜图像进行去噪与增强,节省了计算时间;计算中没有使用积分形式的滤波器,使得该方法适于硬件实现.该方法经历了285 290次匹配实验,正确识别率达到98.81%.方法的有效性得到了充分验证. Relating the iris recognition to the working mechanism of human brain, a method of restructuring the characteristic vector field is recommended. It calculates the lst-order differences separately from the rows of one normalized iris image and columns of another one, then the two differences are mapped to form a vector field. Based on the restructuring idea, the lst-order differences are further calculated from the rows of an iris image and from the columns of another iris image for restructuring a new characteristic vector field. Then, whether the two iris images are resulting from the same iris is judged by computing the restructuring distance between the two fields. Comparing the method with some other existing ones, it shows the advantage that its preprocessing procedure does not require denoising and image enhancing but reduces the time for computation. Moreover, because there is no filter in integral form used during computation, the method is adaptable to hardware implementation. With the match test done 285,290 times, it was revealed that the rate of correct recognition is up to 98.81% by use of this method, thus verifying its validity.
机构地区 东北大学理学院
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第8期1098-1100,共3页 Journal of Northeastern University(Natural Science)
基金 辽宁省科学技术基金资助项目(002010) 沈阳市科学技术基金资助项目
关键词 虹膜识别 特征向量场 重构 重构距离 生物特征识别 iris recognition characteristic vector field restructuring restructuring distance biometric personal identification
  • 相关文献

参考文献9

  • 1Daugman J.Statistical richness of visual phase information:update on recognizing persons by iris pattern[J].International Journal of Computer Vision,2001,45(1):25-38.
  • 2Daugman J.High confidence visual recognition of persons by a test of statistical independence[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(11):1148-1161.
  • 3Daugman J.The importance of being random:statistical principles of iris recognition[J].Pattern Recognition,2003,36(2):279-291.
  • 4Boles W,Boashash B.A human identification technique using image of the iris and wavelet transform[J].IEEE Transactions on Signal Processing,1998,46(4):1185-1188.
  • 5Wildes R P.Iris recognition:an emerging biometric technology[J].Proceedings of the IEEE,1997,85(9):1348-1363.
  • 6Ma L,Tan T N,Wang Y H,et al.Local intensity variation analysis for iris recognition[J].Pattern Recognition,2004,37(6):1287-1298.
  • 7Zhu Y,Tan T,Wang Y.Biometric personal identification based on iris patterns[C]∥Proceedings of International Conference on Pattern Recognition.Barcelona:IEEE Computer Society,2000,Ⅱ:805-808.
  • 8Park C,Lee J,Smith M,et al.Iris-based personal authentication using a normalized directional energy feature[C]∥ Proceedings of 4th International Conference on Audio-and Video-Based Biometric Person Authentication.Berlin:Springer,2003:224-232.
  • 9Institute of Automation,CAS.Database of 756 grayscale eye images[DB/OL].[2005-11-13].http:∥www.sinobiometrics.com.

同被引文献11

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部