期刊文献+

基于地理信息元组的分类预测理论及应用——以中亚矿集区预测为例 被引量:2

Geographic information tuple based classification assessment theory and application——a case of the Central Asia
下载PDF
导出
摘要 地理信息科学的迅速发展为矿集区预测提供了新的理论依据,使地理信息理论、相应的技术方法组合及应用的整体研究成为可能。在大量理论和实验研究的基础上提出了基于地理信息元组的分类预测理论体系,该理论体系由六个概念、一个空间信息本质、两个空间信息特性以及六个空间信息相关方法和约定的构成。并在该理论体系基础上结合空间数据分析方法和探索式空间数据分析方法,建立了基于地理信息元组的分类预测模型。应用该模型在中亚区域实现了Au矿集区预测目标。为中亚成矿域中其它区域(如新疆)的矿集区预测研究奠定了理论与方法论基础。 The fast development of geographic information science provides new theoretic foundation for metallogenic district mapping. It makes the systematic research on geographic information applying theory, techniques combination and application possible. In this paper, by great deal of theoretical and experimental research, a new theory was put forward, which is geographic information tuples based classification assessment theory. The theory consists of six concepts, one spatial information essence, two spatial information specialties and six processing agreements of spatial information. Based on the theoretic system, combining spatial data analysis and exploratory spatial data analysis, a classification assessment model was constructed and using the model, Au metallogenic district mapping in Central Asia was carried out and ideal results was obtained. The theory and the model can be regarded as the theoretical and methodological foundation for metallogenic district mapping in other districts.
出处 《干旱区地理》 CSCD 北大核心 2007年第4期565-572,共8页 Arid Land Geography
基金 国家重点基础研究发展规划项目(2001CB409809) 国家科技支撑计划重点项目(2006BAB07B07) 新疆科技厅攻关项目200633132资助
关键词 地理信息元组 分类预测理论 矿集区预测 中亚 geographic information tuples classification assessment theory central Asia metallogenic districts mapping
  • 相关文献

参考文献24

  • 1叶天竺,朱裕生,刘士毅,等.矿产预测工作指南[M].北京:地质出版社,2004.1-9.
  • 2Egenhofer M.Introduction[A].In:Goodchild M,Egenhofer M,Fegeas R,et al.Interoperating geographic information systems[C].London:Kluwer Academic Publishers,1999.1-4.
  • 3Goodchild M.The nature and value of geographic information[A].In:Duckham M,Goodchild M,Worboys M (Eds.).Foundation of geographic information science[C].London:Taylor & Francis,2003.19-33.
  • 4Mark D.Cognitive models of geographical space[J].Geographical Information Science,1999,13 (8):747-774.
  • 5Egenhofer M,Glasgow J,Gunther O,et al.Progress in computational methods for representing geographic concepts[J].International Journal of Geographical Information Science,1999,13 (8):775 -796.
  • 6Goodchild M.Geographical information science[J].International Journal of Geographical Information Systems,1992,6(1):31 -45
  • 7Goodchild M,Egenhofer M,Kemp K,et al.Introduction to the Varenius Project[J].International Journal of Geographical Information Science,1999,13(8):731 -745.
  • 8Harnad S.To cognize is to categorize:cognition is categorization[A].In:Lefebvre C,Cohen H.Handbook of categorization[C].Elsevier Science Ltd,2005.20-42.
  • 9Mennis J.Derivation and implementation of a semantic GIS data model informed by principles of cognition[J].Computers,Environment and Urban Systems,2003,27:455 -479.
  • 10Gardenfors P.Conceptual spaces:on the geometry of thought[M].Cambridge:MIT Press,MA.6-45.

同被引文献32

  • 1赵鹏大,孟宪国.地质异常与矿产预测[J].地球科学(中国地质大学学报),1993,18(1):39-47. 被引量:69
  • 2Cox D P, Singer D A. eds. Mineral deposit models[M].U.S.Geological SurveyBulletin 16931.1986,1-379.
  • 3Singer D.A.Typing Mineral Deposits Using Their Grades and Tonnages in an Artificial Neural Network[J]. Natural Resources Research2003, 12(3):201-208.
  • 4Singer D.A.Basic concepts in threepart quantitative assessments ofundiscovered mineral resources[J].Nonrenewable Resources. 1993, 2(2):69-81.
  • 5Singer D.A. Conditional estimates of the number of podiform chromitedeposits[J].Nonrenewable Resources. 1994,3(3):200-204.
  • 6Singer D.A.,Menzie W.D.et al.Mineral deposit density-an update[J]. U.S. Geological Survey Professional Papers.2001,1640(A): A1 -A13.
  • 7Gettings M.E.,Bultman M.W.et al.A complex systems model Approachtoquantified mineral resourceappraisal[ J].Environmental management. 2004,33(1):87-98.
  • 8Mihalasky M.J.Mineral PotentialModelling of Gold and Silver Mineralization in the Nevada GreatBasin:A GIS-Based Analysis Using Weights of Evidence [M].USGSOpen-File Report,2001, 01-291:2~8
  • 9Anselin L.Exploratory Spatial Data Analysis and Geographic Information Systems[A],in:M.Painho (ed.). New Tools for Spatial Analysis [C].Luxembourg: Eurostat. 1994,45-54.
  • 10Goodchild M.E The nature and value of Geographic Information[A]. In:Matt Duckham, Michael E Goodchild and Michael E Worboys (Eds.). Foundation of Geographic Information Science[C].London: Taylor & Francis. 2003, 19-33.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部