期刊文献+

基于Duffing振子的微弱信号混沌检测 被引量:11

Chaos-Based Weak Signal Detection Approach via Duffing Oscillator
下载PDF
导出
摘要 分析了Duffing振子的混沌特性,给出了确定系统混沌阈值的Melnikov方法.在阐述了基于相平面变化进行微弱信号检测原理后,在混沌检测中噪声对系统状态的影响也进行了研究.仿真结果表明,Duffing振子对与参考信号频率差较小的周期信号敏感,对白噪声和频差较大的周期干扰信号具有免疫力,该振子应用于实际微弱信号的检测具有可行性. The chaotic character of Dulling oscillator is analyzed, and the Melnikov method of determining chaotic threshold of Dulling oscillators is discussed. The principle of weak signal detection based on the change of phase trace is described, and the influence of noise to the system status in the chaos detection process is also studied. Simulation experiments show that the oscillator is sensitive to the small signal having the tiny frequency difference with the referential signal and immune against the random noise and interference signal having larger frequency difference with the referential signal. The application of the oscillator to weak signal detection is feasible.
出处 《电子器件》 CAS 2007年第4期1380-1383,共4页 Chinese Journal of Electron Devices
基金 国家自然科学基金重大项目资助(50539140) 面上项目资助(50579022) 中国博士后科学基金资助(2006039251)
关键词 微弱信号检测 DUFFING振子 信噪比 MELNIKOV函数 混沌阈值 weak signal detection Dulling oscillator signal to noise ratio (SNR) Melnikov's functions chaotic threshold
  • 相关文献

参考文献7

二级参考文献33

  • 1张键.具有滞后特性方程的异宿分岔[J].应用力学学报,1997,15(4):141-145.
  • 2陈予恕.非线性动力学和混沌基础[M].长春:东北师范大学出版社,1994..
  • 3刘秉正(LIU Bing-zheng).非线性动力学与混沌基础(修订本)(Nonlinear Dynamics and Introduction to Chaos (Revision))[M].长春:东北师范大学出版社(Changchun:Northeast Normal University Press),1995.140.
  • 4刘曾荣(LIU Zeng-rong).混沌的微扰判据(Perturbation Criteria for Chaos)[M].上海:上海科技教育出版社(Shanghai:Shanghai Scientific and Technological Education Publishing House),1995.42.
  • 5西安交通大学高等数学教研室(The Higher Mathematics Staff Room of Xian Traffic University).复变函数(第4版)(Functions of Complex Variable(the fourth edition))[M].北京:高等教育出版社(Beijing:Higher Education Press),1997.156.
  • 6[1]Leung H and Lo T 1993 IEEE J. Oceanic Engin. 18 287
  • 7[2]Leung H et al 1987 IEEE Trans. Neural Networks 12 1133
  • 8[3]Short K M 1994 Int.J.Bif.Chaos 4 959
  • 9[5]Birx D I 1992 IEEE Int. Joint Conf. Neural Networds 22 881
  • 10[6]Haykin S and Li X B 1995 Proc. IEEE 83 94

共引文献211

同被引文献73

引证文献11

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部