期刊文献+

耦合混沌系统时空动力学的模拟研究 被引量:1

Simulated Study of Coupled Chaotic Systems' Spatiotemporal Dynamics
下载PDF
导出
摘要 研究了相同结构的混沌系统耦合后所得到的新系统的时空动力学行为及其系统特性.通过计算机仿真得到了耦合系统的分岔图和Lyapunov指数;在系统初值受噪声干扰的情况下,对混沌轨道偏移的均方根误差值与参与耦合的混沌子系统数量之间的关系进行了研究.计算机仿真结果证明,耦合后得到的新系统仍然是混沌态的,因此,它依旧保持了对初值的敏感性;但同时降低了混沌轨道指数漂移的不稳定性,在一定程度上抑制了噪声对系统初值的干扰. The spatiotemporal dynamics behavior and system characteristic has been discovered for a new system coupled by some chaotic systems with same structure. Computer simulation shows its bifucations diagram, and Lyapunov exponent. Relationship between coupled systems' root mean square error of chaotic trajectory's excursion and the number of coupled chaotic system has been studied too. Results show that the new system is still in chaos, keeps sensitivity of initial states,. At the same time, it can reduce the unstableness of chaotic trajectories, which can help to restrain noise in the initial condition.
出处 《电子器件》 CAS 2007年第4期1384-1386,共3页 Chinese Journal of Electron Devices
基金 国家自然科学基金资助(60302027) 浙江省自然科学基金资助(602127) 浙江省科技计划重点项目资助(2007C23074)
关键词 混沌 耦合 动力学行为 降噪 chaos coupled dynamics behavior noise reduction
  • 相关文献

参考文献10

  • 1Ott E,et al.Controlling Chaos[J].Physical Rev Lett,1990,64(11):1196-1199.
  • 2Elwakil A S,Soliman A M.Current Conveyor Chaos Generators[J].Circuits and Systems Ⅰ:Fundamental Theory and Applications.IEEE Transactions,1999,46(3):393-398.
  • 3George J M,Robert M B.Convergence and Divergence in Neural Networks:Processing of Chaos and Biological Analogy[J].Neural Networks,1992,5(4):605-625.
  • 4Parker T S,Chua L O.Chaos:A Tutorial for Engineers[J].Proceedings of the IEEE,1987,75 (8):982-1008.
  • 5武薇,范影乐,庞全.基于多重耦合降噪的混沌测量研究[J].传感技术学报,2007,20(3):592-595. 被引量:2
  • 6甘建超,肖先赐.混沌的可加性[J].物理学报,2003,52(5):1085-1090. 被引量:41
  • 7于津江,许海波.混沌的乘法规律[J].物理学报,2006,55(1):42-46. 被引量:11
  • 8于津江,曹鹤飞,许海波,徐权.复合混沌系统的非线性动力学行为分析[J].物理学报,2006,55(1):29-34. 被引量:22
  • 9Kuniyoshi Y,Suzuki S.Dynamic Emergence and Adaptation of Behavior Through Embodiment as Coupled Chaotic Field[C]//Proc of IEEE/RSJ Intelligent Robots and Systems,2004,2(28):2042-2049.
  • 10Roman A,Filatov,Alexander E.Chaotic Synchronization in Coupled Spatially Extended Beam-plasma System[J].Physics Letter A,In press,Corrected Proof.

二级参考文献38

共引文献63

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部