期刊文献+

遗传规划和最小二乘法在数据拟合中的应用(英文) 被引量:4

Application of Genetic Programming and Least Square Method on Data Fitting
下载PDF
导出
摘要 为了分析和预测数据,需要预先确定其拟合函数模型.最小二乘法是一种常用的对测量数据进行数据拟合的方法,但当拟合函数模型未知时,该方法即失效.提出了一种联合遗传规划和最小二乘法寻求拟合模型的方法.利用遗传规划方法只需给出数据点及允许误差即可得到匹配的拟合函数式,并可对复杂函数式合理地简化.以此结果作为最小二乘法的拟合函数模型,进一步估计其中的参数,实现了对测量数据的更精确拟合.文中给出了应用实例,说明了本方法的有效性. A function that closely matches an unknown expression based on a finite set of sample data should be given in order to analyze and forecast data. Least square method is a commonly used method to solve the problem when the function expression is provided and it fails when no function expression can be provided. A new method for getting the fitting model by combining genetic programming and least square method is stated. Genetic programming can obtain the matched function expression by only giving the data points and the acceptable error. It can also simplify complex parts of the function. Furthermore, the parameters in the matched function expression are estimated by least square method to give more accurate fitting model. An example is given to prove the effectiveness of above method.
出处 《电子器件》 CAS 2007年第4期1387-1390,共4页 Chinese Journal of Electron Devices
关键词 最小二乘 遗传规划 数据拟合 非线性回归 least squares genetic programming data fitting nonlinear regression
  • 相关文献

参考文献10

  • 1Herve ABDI.Least Squares[M].Lewis-Beck M.Bryman,A.Futing T.(Eds.):2003:1-2.
  • 2AUGUSTO D.A.Symbolic Regression via Genetic Programming[C]//VI Brazilian Symposium on Neural Network,2000:173-178.
  • 3WRIGHT Alden H.Introduction to Genetic Programming[M].USA:University of Montana,2002,CS555/495:1-2.
  • 4LANGDON William B.QURESHI Adil.Genetic Programming-Computers using "Natural Selection" to generate programs[M].UK:University College London,1995:26-28.
  • 5KOZA J R.Genetic Programming Ⅰ[M].USA:The MIT Press,1992:74-75,88-113.
  • 6KRAMER Michael D,ZHANG Du.GAPS:a Genetic Programming System[C]//The Twenty-Fourth Annual International Computer Software and Applications Conference,2000:614-619.
  • 7TEUBEN Peter.Genetic Programming and other fitting techniques in Galactic Dynamics[S].Astronomical Data Analysis Software and Systems ⅩⅢ,2004,314:621-624.
  • 8KOZA John R,KEANE Martin A,STREETER Matthew J.Genetic Programming's Human-Competitive Results[J].2003 IEEE,2003(MAY/JUNE):25-31.
  • 9HILDEBRAND Francis B.Introduction to Numerical Analysis[M].USA:Dover Publications,Inc:1987:22-23.
  • 10COLEMAN T F,LI Y.An Interior,Trust Region Approach for Nonlinear Minimization Subject to Bounds[J].SIAM Journal on Optimization,1996,(6):418-445.

同被引文献26

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部