期刊文献+

基于距离量度的边际核设计及应用

Design and application of the marginalized kernels based on distance
下载PDF
导出
摘要 很多情况下,研究者掌握了一些分类数据的生成信息,这些信息能够为核函数提供有价值的分类特征。已有大量结合生成模型构造核函数的研究,边际核是其中较新的研究成果。以边际核理论为基础,在边际核特征空间中引入特征向量之间的距离作为相似性的量度,构造了基于距离量度的边际核函数。随后将它和原边际核均应用于具体的(旋转酶B亚单位)氨基酸序列分类实验中,实验结果表明:基于距离量度的边际核拥有比原边际核更佳的识别效率,且也具备一定的推广能力。 In most cases, people know something about the probability distribution of data which needed to be classified. These information provide valuable characteristics for kernel function. Several works are done to derive kernels from the generated models, e.g., the marginalized kernel. On the basis ofmarginalized methods, a new reasonable way of designing a kernel, using the distance between different characteristic vectors as the measure of similarity, is proposed in the kernel space. Then the new kernel and the marginalized kernel are both used to classify bacterial gyrase subunit B amino acid sequences. Experimental results demonstrate that the new kernel embraces better recognition accurateness than the marginalized kernel. And it holds strong generalization capability, too.
出处 《计算机工程与设计》 CSCD 北大核心 2007年第14期3501-3503,3507,共4页 Computer Engineering and Design
关键词 核设计 边际核 核特征空间 生物序列分类 隐马尔可夫模型 欧氏距离 kernel design marginalized kernels kernel space biological sequence classification HMM euclidean distance
  • 相关文献

参考文献8

  • 1Tsuda K,Kin T,Asai K.Marginalized kernels for biological sequences[J].Bioinformatics,2002,18:268-275.
  • 2Siepel A,Haussler D.Combining phylogenetic and hidden mar kov models in biosequence analysis[C].Proceedings of the Seventh Annual International Conference on Research in Computational Molecular Biology.New York:ACM Press,2003:277-286.
  • 3Saunders C,Shawe-Taylor J,Vinokourov A.String kernels,fisher kernels and finite state automata[J].Advances in Neural Information Processing Systems,2003,15:273-284.
  • 4Shawe-Taylor J,Crisfianini N.Kernel methods for pattern analysis[M].London:Cambridge University Press,2004:32-38.
  • 5Kin T,Kato T,Tsuda K.Protein classification via kernel matrix completion[M].Kernel Methods in Computational Biology.Cambridge,MA,USA:MIT Press,2004:261-274.
  • 6Marine Biotechnology Institute Culture Collection.ICB database[DB/OL].http://www.mbin.co.jp/icb,2001.
  • 7张志涌..掌握Matlab6.5[M]..北京:北京航空航天大学出版社,,2003..201-209..
  • 8Roth V,Steinhage V.Nonlinear discriminant analysis using kernel function[C].MIT Press,2000:568-574.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部