摘要
针对嵌入式设备互连环境和嵌入式通信中间件的特点,结合马尔可夫决策过程理论,建立了解决路由问题的有限阶段模型,并修改马尔可夫有限阶段模型的向后递归迭代算法,提出了马尔可夫有限阶段决策路由算法MFHDR(Markov Finite Horizon Decision Routing).该算法具有分布计算和自我学习的特性,从而降低了单台嵌入式设备的工作强度,均衡了各台设备的负载,具有较好的时间和空间复杂度,并且能够有效的避免环路的产生.
Combining with the theory of Markov decision process, a finite horizon model to resolve the routing problem is established in view of the features of embedded eqtn'pment interconnecfion environment and embedded communication middleware. The backward recursion iterative algorithm of Markov finite horizon model is modified, and Markov Finite Horizon Decision Routing (MFHDR) algorithm is then proposed. MFHDR algorithm is characteristic by distributed computing and self-studying, thus reduces work intensity of single embedded equipment, balances workload between each equipment, and has a better time and space complexity and is loop-free.
出处
《电子学报》
EI
CAS
CSCD
北大核心
2007年第7期1228-1233,共6页
Acta Electronica Sinica
基金
美国国家科学基金(No.NSFEIA-0103709)
山东省重大科技攻关项目(No.2005GG1101001)
关键词
嵌入式设备互连
嵌入式通信中间件
马尔可夫决策过程
有限阶段模型
分布计算
interconnection of embedded equipment
embedded communication middleware
Markov decision process
firfite horizon model
distributed computing