期刊文献+

燃烧过程中焦炭的孔隙结构演变与颗粒物的形成 被引量:7

Evolution of Porous Coke Structure and the Formation of Particulate Matter During Combustion
下载PDF
导出
摘要 通过煤粉在沉降炉中的燃烧,研究了燃烧过程中煤焦的孔隙结构演变及其对颗粒物(PM)形成的影响,分析了煤焦颗粒的比表面和孔径分布。将不同气氛下燃烧生成的颗粒物通过Dekati低压撞击器(DLPI)分级,分级范围从0.03到10μm。研究表明:初始煤粒径的减小会使焦炭孔隙率增大,使焦炭在燃烧中更容易破碎,从而形成更多的超微米颗粒物;温度的升高虽然也会增加焦炭的孔隙率,但是对超微米颗粒物排放浓度的影响随不同的燃烧气氛而不同;氧气浓度的增加则有利于超微米颗粒物的形成。 Evolution of porous coke structure is the main reason of coke' s fragmentation during combustion of coal and exerting a significant influence on the formation of pariticulate matter (PM). This evolution process and its influence on the formation of particulate matter during combustion has been studied by combustion tests conducted in a drop tube furnace. The coke was got from pulverized coal by pyrolysis in a nitrogenous atmoasphere. The coke particle's specific surface area as well as the pore size distribution were analyzed. Particulate matters begot by combustion in different atmospheres were then classified, with the help of a Dekati Low Pressurelmpecter ( DLPI), into different size ranges from 0.03 up to 10 μm. Results indicate: coke's porosity increases with reducing size of the original coal particles, causing the coke to fragmentate during combustion ever the more readily, thereby generating ever the more supermicronized particulate matter. Though coke's porosity also increases with rising temperature, but its influence on the concentration of emitted supermicron particle varies with the combustion atmosphere concerned, while increasing oxygen concentration always favors the generation of supermicron sized particles.
出处 《动力工程》 EI CAS CSCD 北大核心 2007年第4期579-583,共5页 Power Engineering
基金 国家自然科学基金项目(50325621) 国家重点基础研究发展规划基金项目(2002CB211602)资助
关键词 工程热物理 煤燃烧 颗粒物 焦炭 孔隙结构 engineering thermophysics coal combustion particulate matter coke porous structure
  • 相关文献

参考文献11

  • 1Ondov J M,Ragaini R C,Biermann A H.Emissions and particle-size distributions of minor and trace elements at two western coal-fired power plants equipped with cold-size electrostatic precipitator[J].Environmental Science & Technology,1979(13):946-953.
  • 2Yan L,Gupta R,Wall T F.Fragmentation behavior of pyrite and calcite during high-temperature processing and mathematical simulation[J].Energy & Fuels,2001 (15):389-394.
  • 3Quann R J.Ash vaporization under simulated pulverized coal combustion conditions[M].PHD Thesis,MIT:Department of Chemical Engineering,1982.
  • 4Monroe L S.An experimental and modeling study of residual fly ash formation in combustion of a bituminous coal,PHD[M].MIT:Department of Chemical Engineering,1989.
  • 5Kerstein A R,Niksa S.Twentieth symposium(International) on combustion[M].The Combustion Institute,Pittsburgh,1984:941-949.
  • 6Kantorovich I I,Bar-Ziv E.Combustion and Flame[M].1994(97):61-78.
  • 7Hurt R H,Dudek D R,Longwell J P,et al.The phenomenon of gasification-induced carbon densification and its influence on pore structure evolution[J].Carbon,1988(26):433-449.
  • 8Bar-Ziv E,Kantorovich I I.Mutual effects of porosity and reactivity in char oxidation[J].Progress in Energy and Combustion Science,2001 (27):667-697.
  • 9Helble J J,Sarofim A F.Combust and Flame[M].1989(76):183-196.
  • 10Bar-Ziv E,Kantorovich I I.Role of porous structure in char oxidation[J].Applied Thermal Engineering,1998(18):991-1003.

同被引文献81

引证文献7

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部