期刊文献+

高阶Boussinesq类方程数值求解及试验验证 被引量:4

Numerical simulation for higher-order Boussinesq type equations and experimental verifications
下载PDF
导出
摘要 基于二阶非线性与色散的Boussinesq类方程,采用改善的Crank-Nicolson方法对不同情况下淹没潜堤上的波浪传播进行数值模拟。高阶方程与传统、改进型的Boussinesq方程计算结果进行比较,高阶方程的计算结果与实验吻合得更好。表明该高阶Boussinesq方程能够精确预测变水深、强非线性的复杂波况,可用于实际近岸海域波浪问题的计算。 Based on the Boussinesq type equations with the second order nonlinearity and dispersion, an improved Crank-Nicolson method is employed to simulate the evolved wave propagation passing over the submerged bar. Comparisons are made between the experiment data and the numerical results, which clearly demonstrate the fact that higher-order Boussinesq type equations perform well in accurate prediction of the evolved wave fields than classic Boussinesq equations and the extended Boussinesq equations in the uneven bottom and strong nonlinearity and dispersion. At the same time, the higher-order Boussinesq equations used in this paper is validated by experimental results, which proves that the present equations can be used to solve the practical coastal engineering problems.
出处 《海洋工程》 CSCD 北大核心 2007年第1期88-92,共5页 The Ocean Engineering
基金 国家自然科学基金资助项目(50479053)
关键词 高阶Boussinesq方程 潜堤 改善的Crank-Nicolson方法 higher order Boussinesq equations submerged bar improved Crank-Nicolson method
  • 相关文献

参考文献5

二级参考文献29

  • 1Hong Guangwen(Received December 20 1990,acepted June 15, 1991).Theoretical solution for wave diffraction by wedge or corner with arbitrary reflection characteristics[J].Acta Oceanologica Sinica,1992,11(2):287-303. 被引量:1
  • 2李九发,沈焕庭,徐海根.长江河口底沙运动规律[J].海洋与湖沼,1995,26(2):138-145. 被引量:22
  • 3ZOU Z L. Higher order Boussinesq equations[J]. Ocean Engineering,1999, 26:767-792.
  • 4PEREGRINE D H. Long waves on a beach[J]. J. Fluid Mech. , 1967, 27: 815-827.
  • 5MADSEN P A, MURRAY R, SORENSEN O R. A new form of the Boussinesq equations with improved linear dispersion characteristics[J]. Coast. Eng. , 1991, 15: 371-388.
  • 6MADSEN P A, SORESEN O R. A new form of Boussinesq equations with improved linear dispersion characteristics. Part 2. A slowly-varying bathymetry[J]. Coast. Eng., 1992, 18:183-204.
  • 7NWOGU O. Alternative form of Boussinesq equations for nearshore wave propagation[J]. J. Waterway,Port, Coast. , Ocean Eng. ,1993, 119:618-638.
  • 8SCHAFFER H A, MADSEN P A. Further enhancements of Boussinesq-type equations[J]. Coast.Eng. , 1995, 26: 1-14.
  • 9林建国,博士学位论文,1995年
  • 10张永刚,博士学位论文,1995年

共引文献63

同被引文献70

  • 1张洪生,洪广文,丁平兴.Numerical Modelling of Standing Waves with Three-Dimensional Non-Linear Wave Propagation Model[J].China Ocean Engineering,2001,16(4):521-530. 被引量:3
  • 2朱良生,洪广文.任意水深变化Boussinesq型方程非线性波数值计算[J].海洋工程,2000,18(2):29-37. 被引量:7
  • 3刘诚,刘晓平,蒋昌波.Numerical Simulation of Wave Field near Submerged Bars by PLIC-VOF Model[J].China Ocean Engineering,2005,19(3):509-518. 被引量:9
  • 4CHO Y S,LEE,J I,KIM Y T.Experimental study of strong reflection of regular water waves over submerged breakwaters in tandem[J].Ocean Engineering,2004,31:1325-1335.
  • 5JENG D S,SCHACHT C,LEMCKERT G.Experimental study on ocean waves propagating over a submerged breakwater in front of a vertical seawall[J].Ocean Engineering,2005,32:2231-2240.
  • 6CHANG Hsien-kuo,LIOU Jin-Cheng.Long wave reflection from submerged trapezoidal breakwaters[J].Ocean Engineering,2007,34:185-191.
  • 7RAMBABU A C,MANI J S.Numerical prediction of performance of submerged breakwaters[J].Ocean Engineering,2005,32:1235-1246.
  • 8KOBAYASHI Nobuhisa,MEIGS L E,OTA T,et al.Irregular Breaking Wave Transmission over Submerged Porous Breakwater[J].Journal of waterway,port,coastal,and ocean engineering,2007,3:104-116.
  • 9MADSEN O S.On the Generation of Long Waves[J].Journal of Geophysical Research,1997,6(36):8672-8683.
  • 10HANSEN J R,SVENDEN I A.Laboratory generation of waves of constant form[J] Coastal Engineering,1974,1:388-399.

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部