期刊文献+

基于粒子群优化的多处理器任务调度算法 被引量:4

Task Scheduling Algorithm for Multiprocessor Based on Particle Swarm Optimization
下载PDF
导出
摘要 对于NP(Non-Polynomial)完全问题,现有的算法主要是启发式算法,性能还有待提高。基于粒子群优化智能算法,提出一种新的任务调度算法,目标是在满足任务之间优先关系的条件下,使所有任务整体完成时间最小。算法将粒子位置和任务高度作为任务的优先级,通过表调度技术生成有效的调度方案,并将调度方案对应的调度长度作为粒子的适应值。首先随机产生一群粒子,然后通过使用全局模型的粒子状态更新策略不断迭代,获得可以接受的任务调度方案。仿真实验结果表明,与遗传算法相比,调度长度提高14.7%,运行时间缩短近一半,特别适合于求解规模较大的多处理器任务调度问题。 Efficient task scheduling technique is one of the key issues in exploring muhiprocessor systems' computing power. The existing methods for this NP (Non-Polynomial) completed problem are mainly heuristic algorithms, which still have room for improvement. A novel task scheduling algorithm is proposed based on particle swarm optimization, which is aiming to minimize the overall finish time of all tasks under their dependence relationships. The task priorities are based on both the particle position and the task height, and the scheduling schemes are formed with the list scheduling techniques, while the schedule length is used as particle's fitness value. It first initializes a swarm of particles, and then updates the particle through the global model strategy to reach the acceptable solution. Simulation results show that the schedule length of the proposed algorithm is on the average 14. 7% better than that of the genetic algorithms, but its execution time is almost half of the latter, thus it is especially suitable to the large scale task scheduling.
出处 《吉林大学学报(信息科学版)》 CAS 2007年第3期277-285,共9页 Journal of Jilin University(Information Science Edition)
基金 国防预研基金资助项目(413160201)
关键词 粒子群优化算法 表启发式技术 多处理器系统 任务调度 particle swarm optimization list heuristic technique multiprocessor system task scheduling
  • 相关文献

参考文献19

  • 1GAREY M R,JOHNSON D S.Computers and Intractability:A Guide to the Theory of NP-Completenss[M].New York:W H Freeman,1979.
  • 2WU Min-you,SHU Wei,GU Jun.Efficient Local Search for DAG Scheduling[J].IEEE Transaction on Parallel and Distributed Systems,2001,12(5):617-627.
  • 3KWOK YU-KWONG,AHMAD I.Benchmarking and Comparison of the Task Graph Scheduling Algorithms[J].Journal of Parallel and Distributed Computing,1999,59:381-422.
  • 4陈华平,ustc.edu.cn,黄刘生,ustc.edu.cn.启发式任务调度中的处理器选择策略[J].软件学报,1999,10(11):1194-1198. 被引量:4
  • 5HOU E S,ANSARI N,REN H.A Genetic Algorithm for Multiprocessor Scheduling[J].IEEE Transaction on Parallel and Distributed Systems,1994,5(2):113-120.
  • 6YASUHIRO T,MITSUO G.Genetic Algorithms for Solving Multiprocessor Scheduling Problems[J].Lecture Notes in Computer Science,Springer Berlin/Heidelberg,1997,1285:106-115.
  • 7TSUCHIYA T,OSADA T,KIKUNO T.Genetic-Based Multiprocessor Scheduling Using Task Duplication[J].Microprocessors and Microsystems,1998,22 (3/4):197-207.
  • 8ZOMAYA A Y,WARD C,MACEY B.Genetic Scheduling for Parallel Processor Systems:Comparative studies and Performance Issues[J].IEEE Transaction on Parallel and Distributed Systems,1999,10 (7):795-812.
  • 9KENNEDY J,EBERHART R C.Particle Swarm Optimization[C] //Proceedings of the Fourth IEEE International Conference on Neural Networks.Perth,Australia:IEEE Press,1995,4:1942-1948.
  • 10PANG Wei,WANG Kang-ping,ZHOU Chun-guang,et al.Fuzzy Discrete Particle Swarm Optimization for Solving Traveling Salesman[C]//Proceeding of the Fourth International Conference on Computer and Information Technology.Wuhan,China:IEEE Press,2004,9:796-800.

二级参考文献31

  • 1陈华平,林洪,陈国良.并行分布计算中的启发式任务调度[J].计算机研究与发展,1997,34(S1):81-85. 被引量:4
  • 2张利彪,周春光,马铭,刘小华.基于粒子群算法求解多目标优化问题[J].计算机研究与发展,2004,41(7):1286-1291. 被引量:225
  • 3李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 4陈华平,李京,陈国良.并行分布计算中的任务调度问题(二)[J].计算机科学,1997,24(2):23-28. 被引量:2
  • 5KENNEDY J,EBERHART R C.Particle swarm optimization[A].Proceedings of IEEE International Conference on NeutralNetworks[C].Piscatwang,NY,USA:IEEE Service Center,1995.1942-1948.
  • 6EBERHART R C,SHI Y H.Particle swarm optimization:development,applications and resources[A].Proceedings of Congress on Evolutionary Computation[C].Piscatwang,NJ,USA:IEEE Service Center,2001.81- 86.
  • 7TASGETIRN M F,LIANG Y C,SEVKLI M,et al.Particle swarm optimization algorithm for makespan and total flowtime minimization in permutation flowshop sequencing problem[EB/OL].http://www.fatih.edu.tr/~ ftasgetiren/down load/EJOR_FTASGETIREN,2004 - 11 - 18.
  • 8陈华平,计算机研究与发展,1997年,34卷,增刊,74页
  • 9R C Eberhart,J Kennedy. A New Optimizer Using Particles Swarm Theory[C].In:Proc of the Sixth International Symposium on Micro Machine and Human Science,Nagoya,Japan,1995
  • 10Y H Shi ,R C Eberhart.A Modified Particle Swarm Optimizer[C].In:IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, 1998-05

共引文献67

同被引文献48

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部