期刊文献+

IEEE802.11n系统最优包长和聚合个数调节算法 被引量:2

Algorithm of optimal packet size and aggregation number for IEEE 802.11n system
下载PDF
导出
摘要 为了在非理想信道和给定时延约束下提高IEEE802.11n系统的吞吐量,推导了有传输差错条件下采用聚合后一次成功发送的平均数据量;将该数据量代入描述理想信道DCF系统的Markov模型的饱和吞吐量表达式,得到非理想信道下DCF系统的饱和吞吐量计算式;分析DCF机制下采用数据包聚合方案的平均时延及各退避阶的平均时延,将业务的时延约束转化为对平均时延的限制;在平均时延限制下,提出一种根据信道状态和所得计算式动态调节包长和聚合个数的算法,使系统的饱和吞吐量最大.仿真结果证实采用最优数据包长和聚合个数调节算法的系统饱和吞吐量明显高于用固定包长和聚合个数的方案. In order to improve the system throughput of IEEE 802. 11 n under delay constraint, the average data quantity of one transmission with aggregation under non-ideal channel condition (when transmission error exists) is derived. The calculating formula of saturation throughput of distributed coordination function (DCF) system in non-ideal channel condition is obtained by inlaying the average data quantity into the mathematical expression of saturation throughput in Markov model which describes the DCF system in ideal channel condition. Analysis is presented on the average delay of system and each backoff stage of DCF with aggregation scheme to transform the delay constraint to the limit of average delay. To maximize the saturation throughput, the packet size and aggregation number are dynamically adjusted according to the variable channel conditions under the limit of average delay. The simulation results show that the system throughput from the adjusting algorithm is obviously higher than that from fixed packet size and aggregation number scheme.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第4期554-558,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(60472080) 高等学校博士学科点专项科研基金资助项目(2006033506)
关键词 IEEE802.11N 非理想信道 时延约束 吞吐量 包长 聚合 IEEE 802. 11 n non-ideal channel delay constraint throughput packet size aggregation
  • 相关文献

参考文献11

  • 1Enhanced Wireless Consortium (EWC).Enhanced wireless consortium high throughput (HT) MAC specification[EB/OL].(2006-01-05)[2006-04-14].http://www.enhancedwirelessconsor tium.org/home.
  • 2Yang Xiao,Rosdahl Jon.Performance analysis and enhancement for the current and future IEEE 802.11 MAC protocols[J].ACM SIGMOBILE Mobile Computing and Communications Review:Special Issue on Wireless Home Networks,2003,7(2):6-19.
  • 3Shao Huairong,Harkirat Singh,Chiu Ngo.MAC-enabling technologies for high throughput wireless LAN[C]//Proceedings of the Consumer Communications and Networking Conference.Las Vegas,Nevada,USA,2006:173-177.
  • 4IEEE Working Group.ISO/IEC 8802-11 wireless LAN medium access control (MAC) and physical layer (PHY) specifications[S].New York:IEEE Press,1999.
  • 5IEEE 802.11b Working Group.ISO/IEC 8802-11 wireless LAN medium access control (MAC) and physical layer (PHY) specification:high-speed physical layer extension in the 2.4 GHz band[S].New York:IEEE Press,1999.
  • 6IEEE 802.11a Working Group.ISO/IEC 8802-11:1999/Amd 1:2000(E) wireless LAN medium access control (MAC) and physical layer (PHY) specification:high-speed physical layer in the 5 GHz band[S].New York:IEEE Press,2000.
  • 7IEEE 802.11n TGn Sync.TGn sync proposal technical specification[EB/OL].(2006-04-26)[2006-10-09].http://www.ieee802.org/11/DocFiles/04.
  • 8Bianchi Giuseppe.Performance analysis of the IEEE 802.11 distributed coordination function[J].IEEE Journal on Selected Areas in Communications,2000,18(3):535-548.
  • 9Chatzimisios P,Boucouvalas A C,Vitsas V.IEEE 802.11 packet delay-a finite retry limit analysis[C]//Proceedings of IEEE GLOBECOM.San Francisco,USA,2003:950-954.
  • 10Raptis P,Vitsas V,Paparrizos K,et al.Packet delay distribution of the IEEE 802.11 distributed coordination function[C]//World of Wireless Mobile and Multimedia Networks.Washington DC,USA,2005:299-304.

同被引文献22

  • 1余旭涛,张在琛,毕光国.一种提高能量效率的Ad Hoc网络MAC层协议[J].计算机学报,2006,29(2):256-266. 被引量:15
  • 2程远,张源,高西奇.差错信道下无线局域网丢包率性能分析[J].通信学报,2007,28(5):126-131. 被引量:13
  • 3LAN/MAN Standards Committee of the lEvEE Computer Society. ISO/IEC 8802-11 lEvEE Std 802. llnTM, Draft 5.0-Part 11: wireless LAN media access control (MAC) and physical Layer (PHY) specifications: Enhancements for higher throughput[S]. New York: IF.F.E Press, 2009.
  • 4Hong J H, Sohraby K. On modeling, analysis, and optimization of packet aggregation systems [ J].IEEE Trans- actions on Communications, 2010, 58(2) : 660 - 668.
  • 5Lin Yuxia, Wong V W S. Frame aggregation and opti- mal frame size adaptation for IEEE 802. l ln WLANs [ C ]//IEEE Global Telecommunications Conference. San Francisco, CA, USA, 2006: 1- 6.
  • 6Skordoulis D, Ni Qiang, Chen Hsiao-Hwa, et al. IEEE 802. 11 n MAC frame aggregation mechanisms for next- generation high-throughput WLANs [ J ]. Wireless Communications, 2008, 15( 1 ): 40- 47.
  • 7沈丹萍,沈连丰.有扰信道下超高速WLAN最优帧聚合算法研究[C]//第十五届海峡两岸无线电技术研讨会.昆明,2010:24-29.
  • 8Bianchi G. Performance analysis of the IEEE 802. 11 distributed coordination function [ J ]. IEEE Journal on Selected Areas in Communications. 2000. 18(3): 535-547.
  • 9Wu Haitao, Peng Yong, Long Keping, et al. Performance of reliable transport protocol over IEEE 802. 11 wireless LAN: analysis and enhancement [ C ]//IEEE Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies. New York, NY, USA, 2002: 599- 607.
  • 10LAN/MAN' Standards Committee of the 1F, F,E Computer Society. ISO/IEC 8802-11 IEEE Std 802. llTM-part 11: wireless LAN media access control and physical layer specifications [S ]. New York: IE, EF, Press, 2007.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部