期刊文献+

一种高效挖掘高维数据的频繁闭合模式算法 被引量:1

Efficient algorithm for frequent closed patterns mining from high dimensional data
下载PDF
导出
摘要 为了克服传统高维数据挖掘频繁闭合模式算法迭代产生子表,引起算法执行时间长和存储开销大等问题,提出了一种高效挖掘高维数据的频繁闭合模式的算法EMHCP.EMHCP算法采用一种新型结构位图表来压缩存储数据,在仅扫描数据库一次后,建立位图转换表.根据位图转换表来构建混合树结构,采用深度优先的方式和有效的剪枝策略高效挖掘出所有的闭合模式.从而有效地缩小了搜索空间,加快了处理速度.通过在生物数据库应用的实验结果表明,EMH-CP算法比已有的CARPENTER和TD-close等算法更为有效. The traditional algorithms for mining frequent closed patterns from high dimensional data interactively generate conditional tables, which costs much runtime and memory space. To solve these problems, a new algorithm-EMHCP (efficient mining of frequent closed patterns from high dimensional data) is proposed. The EMHCP algorithm adopts a novel structure, a bit map table, to compress the store data. With the table, a compound tree is constructed after scanning the database only once. By searching with the depth preferentially and using efficient pruning strategies, EMHCP can mine all frequent closed patterns efficiently. Therefore, the search space is reduced, and the mining speed is accelerated. The experiments on real bioinformatics datasets show that EMHCP is more efficient than previous algorithms such as CARPENTER and TD-close.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第4期569-573,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(70472033 60473012) 国家科技基础条件平台建设资助项目(2004DKA20310) 江苏省自然科学基金资助项目(BK2005047 BK2005046) 江苏省高校"青蓝工程"基金资助项目
关键词 数据挖掘 频繁闭合模式 行枚举 混合树 data mining frequent closed patterns row enumeration compound tree
  • 相关文献

参考文献9

  • 1Pasquier N,Bastide Y.Discovering frequent closed itemsets for association rules[C]//Proceedings of the 7th Int'l Conf on Database Theory.Jerusalem:Springer-Verlag,1999:398-416.
  • 2Pei J,Han J,Mao R.CLOSET:an efficient algorithm for mining frequent closed itemsets[C]//Proc 2000 ACM-SIGMOD Int Workshop Data Mining and Knowledge Discovery.New York:ACM Press,2000:11-20.
  • 3Wang J,Han J,Pei J.Closet+:searching for the best strategies for mining frequent closed itemsets[C]//Proc 2003 ACM SIGKDD.New York:ACM Press,2003:236-245.
  • 4Zaki M,Hsiao C.ChARM:an efficient algorithm for closed association rule mining[C]//Proc of 2002 SIAM Data Mining Conf.Arlington,VA,2002:457473.
  • 5Pan F,Cong G,Zaki M.CARPENTER:finding closed patterns in long biological datasets[C]//Proc ACM SIGKDD 2003.New York:ACM Press,2003:637-642.
  • 6Cong G,Tung A,Xu X.FARMER:finding interesting rule groups in microarray datasets[C]//Proc 23rd ACM Int Conf Management of Data.New York:ACM Press,2004:143-154.
  • 7Liu H,Han J,Xin D,et al.Mining interesting patterns from very high dimensional data:a top-down row enumeration approach[C/OL]//Proc of the 6th SIAM International Conference on Data Mining.Bethesda,MD,2006.http://www.siam.org/meetings/sdmob/proceedings/026liuh.pdf.
  • 8Liu H,Han J,Xin D,et al.Top-down mining of interesting patterns from very high dimensional data[C]//Proc 22nd International Conference on Data Engineering.Los Alamitos:IEEE Computer Society Press,2006:114-116.
  • 9Creighton C,Hanash S.Mining gene expression databases for association rules[J].Bioinformatics,2003,19(1):79-86.

同被引文献15

  • 1Agrawal R, Srikant R. Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference on Very Large Data Bases (VLDB' 94), Sanfiaogo di Chile,Chile, 1994. 487-499
  • 2Yah X, Han J. gSpan: Graph-based substructure pattern mining. In: Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM'02), Maebashi City, Japan, 2002. 721-724
  • 3Koyuturk M, Grama A, Szpankowski W. An eficient algorithm for detecting frequent subgraphs in biological networks. Bioinformatics, 2004,20(1) : i200-i207
  • 4Hu H Y, Yan X F, Huang Y, et al. Mining coherent dense subgraphs across massive biological networks for functional discovery. Bioinformatics, 2005,21(1) : i213-i221
  • 5Olken F. Biopathways and protein interaction databases. In: A lecture in Bioinfonnatics Tools for Comparative Genomics: A short course, Berkeley, CA, 2003
  • 6Hart J W, Pei J, Yin Y W. Mining frequent patterns without candidate generation. In: Proceedings of the 2000 ACMSIG- MOD International Conference on Management of Data, Dallas, TX,USA, 2000. New York: ACM Press, 2000. 1-12
  • 7Krishnamurthy L, Nadeau J, Ozsoyoglu G, et al. Pathways database system: an integrated system for biological pathways. Bioinformatics, 2003,19(8) : 930-937
  • 8Han J W, Kamber M. Data Mining Concepts and Tech- niques. 2nd Edition. Singapore: Elsevier (Singapore) Pte Ltd, 2007. 233-249
  • 9Altschul S F, Madden T L, Scheffer A A, et al. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997, 25 ( 17 ) : 3389- 34O2
  • 10Thompson J D, Higgins D G, Gibson T J. CLUSTALW: im- proving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 1994,22 (22), 4673-4680

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部