期刊文献+

基于驾驶行为共性的回波速度解释及仿真 被引量:2

Interpreting and emulating echo wave speed based on common characteristics of driving behavior
下载PDF
导出
摘要 为了解释车流回波速度现象,提取出驾驶行为共性:驾驶员利用与渴望车速对应的心理车头距判断前方的交通流状况;加速或减速行为是驾驶员根据前方车传递的交通信息和自己对此信息的时间和空间理解来进行的,并且以回波速度向后传递.利用数学方法描述这些驾驶共性,建立了以车头距和驾驶员反应时间等为参数的回波速度模型,解释了车流回波速度现象.使用MATLAB软件对回波速度模型编程,数值仿真加速与减速时回波速度曲线.仿真结果表明:驾驶员反应时间明显影响回波速度,在交通流由自由流转变为拥挤流时的临界车流密度(cρ=25.1vehicle/km)处回波速度最大(cmax=19.8km/h),其大小与相关文献提供的数据吻合. In order to interpret phenomenon of echo wave speed in traffic stream, the common characteristics of driving behavior is put forward first, namely, drivers judge the front state of traffic stream by the mental headway corresponding to the desired velocity, accelerating or decelerating behavior is selected by front vehicle's transfer of traffic information and by driver's comprehension of the information from the view of time and space, which is transferred backwards at the echo wave speed. By mathematical descriptions of the common characteristics of driving behaviors a microscopic formula on echo wave speed is provided, which takes headway and drivers' reaction time as parameters. The phenomenon of echo wave speed in traffic stream is interpreted. The echo wave speed for accelerating and decelerating were emulated with the MATLAB software. Numerical emulating result indicates that the reaction time of driver affects the echo wave speed obviously. The maximum speed of the echo wave (Cmax = 19. 8 km/h), which agrees with the value listed in corresponding literatures, occurs at the critical density (pc = 25.1 vehicle/km), where traffic stream transits from free stream to congested stream.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第4期691-694,共4页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(50478071)
关键词 驾驶行为 回波 回波速度 车辆跟弛 driving behavior echo wave echo wave speed car-following
  • 相关文献

参考文献17

  • 1Zhang H M.A mathematical theory of traffic hysteresis[J].Transportation Research Part B,1999,33(1):1-23.
  • 2Zhang H M.Driver memory,traffic viscosity and a viscous vehicular traffic flow model[J].Transportation Research Part B,2003,37(1):27-41.
  • 3Zhang H M,Kim T.A car-following theory for multiphase vehicular traffic flow[J].Transportation Research Part B,2005,39(5):385399.
  • 4Wu Ning.A new approach for modeling of fundamental diagrams[J].Transportation Research Part A,2002,36(10):867-884.
  • 5Kerner B S.Synchronized flow as a new traffic phase and related problems for traffic flow modeling[J].Mathematical and Computer Modeling,2002,35(5):481-508.
  • 6Kerner B S,Klenov S L.Probabilistic breakdown phenomenon at on-ramp bottlenecks in three-phase traffic theory:congestion nucleation in spatially non-homogeneous traffic[J].Physica A,2006,364:473-492.
  • 7Treiber M,Kesting A,Helbing D.Delays,inaccuracies and anticipation in microscopic traffic models[J].Physica A,2006,360(1):71-88.
  • 8Helbing D,Hennecke A,Shvetsov V,et al.MASTER:macroscopic traffic simulation based on a gas-kinetic,non-local traffic model[J].Transportation Research Part B,2001,35(2):183-211.
  • 9Levine E,Ziv G,Gray L,et al.Traffic jams and ordering far from thermal equilibrium[J].Physica A,2004,340(4):636-646.
  • 10Kometani E,Sasaki T.Dynamic behavior of traffic with a nonlinear spacing-speed relationship.[C]//Proceedings of the Symposium on Theory of Traffic Flow,Research Laboratories,General Motors.New York,1959:105-119.

同被引文献35

  • 1唐海雯.实时监控 及时处置 为排堵保畅做贡献[J].交通与运输,2006(2):10-11. 被引量:1
  • 2ZHANG H M. Driver memory, traffic viscosity and a viscous vehicular traffic flow model[ J]. Transportation Research, Part B, 2005, 57(1) : 27-41.
  • 3ZHANG H M, KIM T. A car-following theory for muhiphase vehicular traffic flow [ J ]. Transportation Research, Pall B, 2005, 39 (5): 385-399.
  • 4NAGATANI T. Traffic behavior in a mixture of different vehicles[ J ]. Physica A, 2000, 284: 405-420.
  • 5NAGATANI T. Multiple jamming transitions in traffic flow[ J]. Physiea A, 2000, 290: 501-511.
  • 6NAGAI R, ONOUCHI T, NAGATANI T. Phase separation and evolution of one pulse jam in traffic[J]. Physica A, 2005, 354: 571-581.
  • 7KERNER B S. Synchronized flow as a new traffic phase and related problems for traffic flow modeling[ J]. Mathematical and Computer Modelling, 2002, 35: 481-508.
  • 8KERNER B S, KLENOV S L. Probabilistic breakdown phenomenon at on-ramp bottlenecks in three-phase traffic theory: congestion nucleation in spatially non-homogeneous traffic [ J]. Physica A, 2006, 364: 473-492.
  • 9HELBING D, HENNECKE A, SHVETSOV V, et al. Macroscopic traffic simulation based on a gas-kinetic, non-local traffic model[J]. Transportation Research, Part B, 2001, 35 (2): 183-211.
  • 10LEVINEE, ZIV G, GRAY L, et al. Traffic jams and ordering far from thermal equilibrium [ J ]. Physica A, 2004, 340: 636-646

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部