期刊文献+

广义Lorenz映射的混沌行为及不变密度 被引量:2

Chaotic behavior of generalized Lorenz maps and its invariant density
下载PDF
导出
摘要 用符号动力学证明了广义的、即具有2个或以上间断点的分段线性Lorenz映射以移位自同构为子系统,即系统是混沌的,并给出了拓扑熵的下界以及Lyapunov指数的上界与下界.讨论了广义Lorenz映射的不稳定周期轨道的周期及稠密性,给出了不稳定周期轨道的周期.用构造下界函数的方法论证了分段线性广义Lorenz映射在随机作用随机扰动下系统具有统计稳定性. Proof is given to the conclusion that a subset of symbolic system is shift automorphic to a family of generalized and piecewise continuous Lorenz maps, which means that the generalized Lorenz map is chaotic. There are two or more points of discontinuity in the Lorenz maps which are linear on every sub-interval. The unstable periodic and dense orbits are discovered and hence periods are given. Lower bounds of the maps are given and both lower and upper bounds for the local Lyapunov exponent are also given. At last it is proved that, by constructing a lower bound function, the family of generalized Lorenz maps have invariant density under stochastic perturbations.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第4期711-715,共5页 Journal of Southeast University:Natural Science Edition
关键词 广义Lorenz映射 符号动力系统 混沌 拓扑熵 不变密度 generalized Lorenz maps symbolic dynamics chaos topological entropy invariant density
  • 相关文献

参考文献10

  • 1Percival I,Vivaldi F.Arithmetical properties of strongly chaotic motions[J].Physica D,1987,25(1):105-130.
  • 2王福来.广义Taylor映射与Hénon映射具有混沌条件的改进[J].数学进展,2004,33(5):591-597. 被引量:4
  • 3Lasota A,Mackey M.Chaos,fractals and noise[M].2nd ed.New York:Springer-Verlag,1994.
  • 4丁义明,范文涛.一簇Lorenz映射的混沌行为与统计稳定性[J].数学物理学报(A辑),2001,21(4):559-569. 被引量:4
  • 5Keener J.Chaotic behavior in piecewise continuous difference equations[J].Trans Amer Mat Soc,1980,26(1):589-604.
  • 6Malkin M L.Rotation intervals and the dynamics of Lorenz type mappings[J].Selecta Mahematica Sovietica,1991,2(10):265-275.
  • 7Ding Yiming,Fan Wentao.Asymptotic periodicity of Lorenz maps[J].Acta Math Sci,1999,19(1):114-120.
  • 8闵琦,陈中轩.洛伦兹映射拓扑熵计算的一点技巧[J].云南大学学报(自然科学版),2001,23(1):24-26. 被引量:2
  • 9Elezovic N,Zupanovic V,Zubrinic D.Box dimension of trajectories of some discrete dynamical systems[J].Chaos,Solitons & Fractals,2007,34(2):244-252.
  • 10Chen Z X,Cao K F,Peng S L.Symbolic dynamics analysis of topological entropy and its multifractal structure[J].Phys Rev E,1995,51(3):1983-1988.

二级参考文献16

  • 1Peng Shouli,Phys Lett.A,1999年,261卷,65页
  • 2Hao B L,Phys Rev.E,1998年,57卷,5378页
  • 3郑伟谋,实用符号动力学,1994年,47页
  • 4郝柏林,从抛物线谈起,1993年
  • 5Moser J. Stable and Random Motions in Dynamical Systems [M]. Princeton press, 1973
  • 6Li-yorke Amez. Periodic three implies chaos [J]. Math. Monthly, 1975, 82: 985-992.
  • 7Devany R L. An Introduction to Chaotic Dynamical System [M]. Addison-Wesley Press, 1989.
  • 8Banks J, Brooks J, Cairns G, Davis G and Stacey P. On Devemey's definitin of chaos [J]. The American Mathematical Monthly, 1992, 99(4): 332-334.
  • 9Vellekoop M and Berqlund R. On intervals, transitivity=Chaos [J]. AMM, Vo, 1994, 101: 353-355.
  • 10Zhou Jianying. A sufficient condition for 2-dimensional chaotic map [J]. Acta Mathematica Sinica, 1985,28(4): 482-490.

共引文献7

同被引文献15

  • 1程传蕊.一种求解非线性方程组的单纯形算法(algorithm)——同伦算法的分析及其收敛性[J].长春师范学院学报(自然科学版),2005,24(1):16-18. 被引量:3
  • 2王兴元,骆超.Lorenz系统通向混沌的道路[J].大连理工大学学报,2006,46(4):582-587. 被引量:12
  • 3Peng Shou-Li, Du Lei-Ming. Dual star products and symbolic dynamics of Lorenz maps with the same entropy[J].Physics Letters A, 1999, 261 ( 1/2 ) : 63 - 73.
  • 4Zhou Zhong,Peng Shou-Li. Cyclic star products and universalities in symbolic dynamics of trimodal maps [ J ]. Physica D, 2000, 140(3/4) : 213 -226.
  • 5Peng Shou-Li, Zhang Xu-Sheng,Cao Ke-Fei. Dual star products and metric universality in symbolic dynamics of three letters[J]. Physics Letters A, 1998, 246(1/2) : 87 - 96.
  • 6Silva L, Ramos J S. Topological invariants and renormalization of Lorenz maps [J]. Physica D, 2002, 162 (3/4): 233-243.
  • 7Zheng Wei-Mou. Predicting orbits of the Lorenz equation from symbolic dynamics[J]. Physica D, 1997, 109(1/2) : 191 - 198.
  • 8Stefan P. A theorem of Sarkovskii on the existence of periodic orbits of continuous endomorphisms of the real line, comm[J]. Math Phys, 1977,54:237 - 248.
  • 9Li T Y, Yorke J A. Period three implies chaos [ J ]. Amer Math Monthly, 1975, 82:985 -992.
  • 10潘颖昕,杜然,张秀菊.高次多项式微分系统的周期解[J].江南大学学报(自然科学版),2012,11(6):742-746. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部