摘要
The hydrolysis process of the anticancer agents novel non-classical transplatinum( Ⅱ ) with aliphatic amines and the influence of solvent models therein have been studied by using hybrid density functional theory (B3LYP). In this study, the stepwise hydrolysis, trans[PtCl2(Am)(isopropylamine)] + 2H2O → trans-[Pt(Am)(isopropylamine)(OH2)2]^2++ 2Cl^-, was explored. Implicit solvent effects were incorporated through polarized continuum models. The stationary points on the potential energy surfaces for the first and second hydrolysis steps,proceeding via a general SN2 pathway, were fully optimized and characterized. It was found that the first hydrolysis reaction is easier than the second one and the hydrolysis of trans- [PtCl2-(isopropylamine)2] is the easiest in our studying systems. The result can assist in under- tanding the hydrolysis mechanism of trans-[PtCl2(Am)(isopropylamine)] and designing novel Pt-based anticancer drugs.
The hydrolysis process of the anticancer agents novel non-classical transplatinum( Ⅱ ) with aliphatic amines and the influence of solvent models therein have been studied by using hybrid density functional theory (B3LYP). In this study, the stepwise hydrolysis, trans[PtCl2(Am)(isopropylamine)] + 2H2O → trans-[Pt(Am)(isopropylamine)(OH2)2]^2++ 2Cl^-, was explored. Implicit solvent effects were incorporated through polarized continuum models. The stationary points on the potential energy surfaces for the first and second hydrolysis steps,proceeding via a general SN2 pathway, were fully optimized and characterized. It was found that the first hydrolysis reaction is easier than the second one and the hydrolysis of trans- [PtCl2-(isopropylamine)2] is the easiest in our studying systems. The result can assist in under- tanding the hydrolysis mechanism of trans-[PtCl2(Am)(isopropylamine)] and designing novel Pt-based anticancer drugs.
基金
This work was supported by the Science Foundation of Jinan University (639)