期刊文献+

基于神经网络的不可靠数据恢复研究 被引量:1

Research on Trustless Data Restoring Based on Neural Networks
下载PDF
导出
摘要 智能系统中单点或少数传感器采集的数据在某一段时间出现不可靠问题,在装备有许多传感器的智能系统中普遍存在,即使在由先进的传感器构成的桥梁结构健康监测系统中,80%以上的虚假报警也是由于测量数据的不可靠性造成的。传统上对于不可靠数据的处理主要应用线性回归法、平均法等方法进行恢复,然而,大多数测量数据在时域上表现为非线性特征,传统方法恢复的数据在精度上是很难达到要求。以桥梁挠度数据作为研究对象,利用原始数据对挠度测量点进行了关联分析,并依据RBF神经网络强大的函数逼近能力,提出了一种基于神经网络模型来恢复不可靠测量数据的方法,并在仿真实验中,通过对比实验(该方法的均方误差为2E-9,线性回归法均方误差为0.6974)证实了该方法在理论和实践上的精确性和可行性。 It is a general problem of the Intelligent System that the trustless data are obtained by the single or a few sensors some time. Despite the acquisition system of the bridge structural health monitoring system (BSHMS) is designed by advanced sensors, the abnormity deflection occurred in the acquisition system is the main reason for the illusive alarm(above 80% ). A novel method based on the correlation analysis of bridge's checking points and the RBF neural networks is proposed for restoring nonlinear deflection abnormity data. Compared with conventional methods( its MSE is 2e -9), the proposed approach (its MSE is 0. 6974) is more accurate and accords with practice. Simulation results verify the effectiveness of the designed method.
出处 《计算机仿真》 CSCD 2007年第7期333-336,共4页 Computer Simulation
基金 国家科技部重大攻关资助项目(2002BA105C) 国家自然基金资助项目(60404014) 重庆市自然基金资助项目(2005BB608)
关键词 挠度 关联分析 神经网络 非线性逼近 数据恢复 Deflection Correlation analysis Neural networks None - linear approximation Data restoring
  • 相关文献

参考文献9

  • 1JayLee,罗欣.数字化服务技术及其与设计、制造的集成[J].中国机械工程,1998,9(9):1-4. 被引量:16
  • 2G W Housner,et al.Structure Control:Past,Present,and Future[J].Engineering Mechanics,1997.
  • 3E Aktan,S Chase,D Inman and D Pines.Monitoring and Managing the Health of Infrastructure Systems[C].Proc.of the 2001 SPIE Conference on Health Monitoring of Highway Transportation Infrastructure,SPIE,2001.
  • 4徐亚力.桥梁挠度测量方法的探讨[M].铁路建筑,1996.
  • 5A R grawal,T I omasz,N S Arun.Mining association rules between sets of items in large databases[C].In Buneman P,ed.Proceedings of the 1993.ACM SIGMOD International Conference on Management of Data.New York:ACM Press,1993.
  • 6David Hand,Heikki Mannila and Padhraic Smyth.Principles of Data Mining[M].Massachusetts Institute of Technology,2003.
  • 7Simon Haykin.Neural Networks:A Comprehensive Foundation,2nd Edition(影印本)[M].中国机械工业出版社,2004.
  • 8S A Billings,H B Jamaluddin and S Chen.Properties Of Neural Networks With Applications To Modelling Non-Linear Dynamical Systems[J].Int.J.of Control,1992.
  • 9S Chen,C F N Cowan and P M Grant.Orthogonal Least Squares Learning Algorithm For Radial Basis Function Networks[J].IEEE Trans.on Neural Networks,1991.

二级参考文献3

  • 1Lee J,Proceeding of the 27th CIRP International Seminar on Manufacturing System,1995年
  • 2Shi J,Proceeding of 4th IFAC Workshop on Intellignent Manufacturing Systmes,1997年
  • 3Lee Jay,中国机械工程,1997年,8卷,1期,27页

共引文献15

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部