期刊文献+

基于遗传算法的永磁同步电机调速系统PID参数优化 被引量:5

Application of Genetic Algorithm in PID Parameters Optimization for PMSM Speed Servo System
下载PDF
导出
摘要 在分析永磁同步电机(PMSM)数学模型的基础上,针对传统PID整定方式存在的不足,引入了遗传算法对PMSM调速系统PID参数进行寻优。在迭代计算过程中采取最优保留策略,保证个体最终收敛于全局最优值。为了实现理想的电机转速控制效果,采用误差绝对值时间积分型目标函数,并在其中加入了超调惩罚项。仿真研究的结果表明,经过遗传算法优化后的PMSM控制系统具有超调量小、调节时间短、鲁棒性好的特点,与传统PID控制相比具有较高的动态品质和稳态精度。 In view of the limitations of conventional methods for PID parameters tuning, a novel optimization strategy based on genetic algorithm was proposed to PMSM speed servo system according to the mathematical model of PMSM. The optimal solution in every generation was reserved to guarantee all individuals to converge to global optimization. For obtaining a perfect motor control effect, an objective function with a time integral to the absolute value of error and an overshoot-punishment item were implemented in the algorithm. Simulation result demonstrated that the PMSM speed servo system with the improved PID parameters worked well with high dynamic and static performance, because of its advantage in quick response, low overshoot and good robustness.
出处 《电机与控制应用》 北大核心 2007年第7期34-37,共4页 Electric machines & control application
基金 国家科技部"十五"攻关项目(2001BA204B01-03)
关键词 永磁同步电机 遗传算法 调速系统 比例-积分-微分控制 premanent magnetic synchronous motor genetic algorithm speed control systems PID control
  • 相关文献

参考文献9

  • 1SINGH B, REDDY A H N, MURTHY S S. Hybrid fuzzy logic proportional plus conventional integral-derivative controller for permanent magnet brushless DC motor [J].Proceedings on Industrial Technology, 2000(2) : 185-191,
  • 2O' DWYER A. PI and PID controller tuning rules [ M ]. London : Imperial College Press, 2003.
  • 3BUTKIEWICZ B S. System with hybrid fuzzy-conventional PID controller [ J ]. Proceedings on Systems, Man, and Cybernetics, 2000, 5: 3705-3709.
  • 4LIN Cheng-jian, CHEN Cheng-hung, Saliha Erenturk, et al, A compensation-based recurrent fuzzy neural network for dynamic system identification [ J ]. European journal of operational research, 2006, 172 (2) : 696-715.
  • 5MIN H, KO H J, KO C S. A genetic algorithm approach to developing the muhi-echelon reverse logistics network for product returns [J]. Omega, 2006, 34 ( 1 ) : 56-69.
  • 6苏玉鑫,段宝岩.一种新型非线性PID控制器[J].控制与决策,2003,18(1):126-128. 被引量:80
  • 7庄健,王孙安.直流速度伺服电机的自适应遗传算法优化PID控制[J].机床与液压,2003,31(4):95-96. 被引量:5
  • 8HWANG Shun-fa, HE Rong-song. A Hybrid real-parameter genetic algorithm for function optimization [J].Advanced engineering informatics, 2006, 20 (1) : 7- 21.
  • 9郑力新,周凯汀,王永初.PID进化设计法[J].仪器仪表学报,2001,22(4):340-343. 被引量:33

二级参考文献11

  • 1陈隆昌等编著.控制电机[M].西安电子科技大学出版社,2001..
  • 2[3]Wang Q G, Lee T H, Fung H W, et al. PID tuning for improved performance[J]. IEEE Trans Control Systems Tech,1999,7(4):457-465.
  • 3[5]Xu Y, Hollerbach J M, Ma D. A nonlinear PD controller for force and contact transient control[J]. IEEE Control System Magazine,1995,15(1):15-21.
  • 4[6]Homayoun Seraji. A new class of nonlinear PID controllers with robotic applications[J]. J Robotic Systems,1998,15(3):161-181.
  • 5[7]Brian Armstrong, Bruce A Wade. Nonlinear PID control with partial state knowledge: Damping without derivatives[J]. Int J Robotics Res,2000,19(8):715-731.
  • 6Holland J H. Adaptation in nature and artificial system [M].Ann Arbor: The University of Michigan Press, 1975.
  • 7林家骏,王赞基.自适应杂交NGA及其在多值电路分析中的应用[J].华东理工大学学报(自然科学版),1997,23(4):446-451. 被引量:6
  • 8潘立登,黄晓峰.基于相似度的可变编码长度遗传算法[J].北京化工大学学报(自然科学版),1997,24(3):55-59. 被引量:10
  • 9郑力新.双闭环直流调速系统参数的进化计算[J].华侨大学学报(自然科学版),1998,19(3):245-249. 被引量:6
  • 10吴斌,吴坚,涂序彦.快速遗传算法研究[J].电子科技大学学报,1999,28(1):49-53. 被引量:51

共引文献114

同被引文献36

  • 1陈荣,邓智泉,刘日宝,严仰光.基于磁场定向控制的永磁同步电机参数测量[J].河海大学学报(自然科学版),2004,32(6):684-688. 被引量:18
  • 2Moreau S, Kahoul R, Louits J. Parameters estimation of permanent magnet synchronous machine without adding extra-signal as input excitation[J]. IEEE Trans on Industry Applications, 2004, 36(4): 371-376.
  • 3Khwaja M, Silva H. Identification of machine parameters of a synchronous motor[J]. IEEE Trans. on Industry Applications, 2005, 41(2): 557-565.
  • 4Babak N, Farid M, Francois M. Back EMF estimation-based sensorless control of PMSM: robustness with respect to measurement errors and inverter irregularities[J]. IEEE Trans. on Industry Applications, 2007, 43(2): 485-494.
  • 5Stumberger B, Stumberger G, Hamler A. Evaluation of saturation and cross-magnetization interior permanent-magnet synchronous effects in motor[J]. IEEE Transactions on Industry Applications, 2003, 39(5): 1264-1271.
  • 6Abdelhad B, Kaiyu W, Leon M. Identification of induction machine parameters using a new adaptive genetic algorithm[J]. Electric Power Components and Systems, 2004, 32: 767-784.
  • 7Rahimpour E, Bellini A, Cava L. Parameter identification of deep-bar induction motors using genetic algorithm[J]. Electrical Engineering, 2007, 89: 547-552.
  • 8Dupuis A, Ghribi M, Kaddouri A. Multiobjective genetic estimation of DC motor parameters and load torque[C]. IEEE International Conference on Industrial Technology (ICiT), 2004:1511-1514.
  • 9Lankarany M, Rezazade A.Parameter estimation optimizization based on gentic algorithm[J]. IEEE Trans. on Industry Applications, 2006, 36(6): 365-370.
  • 10唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社,2002..

引证文献5

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部