期刊文献+

不同理性双寡头博弈模型的复杂性分析 被引量:18

Complex Dynamics Analysis for a Duopoly Game with Heterogeneous Players
下载PDF
导出
摘要 在市场信息不对称的条件下,市场参与者将会采用不同的产量决策。在此假设下,本文建立了不同理性双寡头博弈模型,并对其进行了定性分析。详细探讨了系统Nash均衡点的存在性和稳定性。并数值仿真了不同的市场参数条件下的系统动态行为。研究发现寡头为了获取前期竞争优势而不断加快产量调整速度,将会导致系统的不稳定,进而使系统陷入混沌状态。 Under the anisomerous condition of the market information, players will choose different output decisions. On this assummption, this paper builds a duopoly game model with heterogeneous expectations, and analyzes the model. We study the existence and stability of this system' s Nash equilibrium. Then show the complex dynamics of this system in different market parameters though numerical simulation. When the player accelerates the adjustment speed of the output quantity in order to achieve initial advantage, we discover that it leads to instability of system and makes the system sink into the chaotic state.
出处 《复杂系统与复杂性科学》 EI CSCD 2007年第2期71-76,共6页 Complex Systems and Complexity Science
关键词 延时有限理性 NASH均衡 混沌 不同理性 delayed bounded rationality Nash equilibrium chaos heterogeneous expectations
  • 相关文献

参考文献9

  • 1[1]Ahamed E,Agiza H N,Hassan S Z.On modifications of puu's dynamical duopoly[J].Chaos,Solitons & Fractals,2000,11:1 025-1 028.
  • 2[2]Agiza H N,Hegazi A S,Elsadany A A.The dynamics of in Bowley's model with bounded rationality[J].Chaos,Solitons & Fractals,2001,9:1 705-1 717.
  • 3[3]Agiza H N,Hegazi A S,Elsadany A A.Complex dynamics and synchronization of a duopoly game with bounded rationality[J].Mathematics and computers in simulation,2002,58(2):133-146.
  • 4易余胤,盛昭瀚,肖条军.具溢出效应的有限理性双寡头博弈的动态演化[J].系统工程学报,2004,19(3):244-250. 被引量:49
  • 5[5]Agiza H N.Explicit stablility zones for cournot game with 3 and 4 competitors[J].Chaos solitons & Fracatals,1998,9(12):1 955-1 966.
  • 6[6]T(o)nu Puu.On the stability of cournot equilibrium when the number of competitors increases[J].Economic Behavior & Organization,16(2006):1 606-1 618.
  • 7姚洪兴,徐峰.双寡头有限理性广告竞争博弈模型的复杂性分析[J].系统工程理论与实践,2005,25(12):32-37. 被引量:47
  • 8杨洪明,赖明勇.考虑输电网约束的电力市场有限理性古诺博弈的动态演化研究[J].中国电机工程学报,2005,25(23):71-79. 被引量:23
  • 9[9]Yassen M T,Agiza H N.Analysis of a duopoly game with delayed bounded rationality[J].Applied Mathematics and Computation,2003,138:387-402.

二级参考文献27

  • 1袁智强,侯志俭,宋依群,蒋传文,邰能灵.考虑输电约束古诺模型的均衡分析[J].中国电机工程学报,2004,24(6):73-79. 被引量:31
  • 2周浩,康建伟,陈建华,包松.蒙特卡罗方法在电力市场短期金融风险评估中的应用[J].中国电机工程学报,2004,24(12):74-77. 被引量:92
  • 3Bischi G I, Naimzada A. Global analysis of a dynamic duopoly game with bounded rationality[ A ]. Advances in Dynamic Games and Application[ M]. Basel: Birkhauser, 1999. chapter 20.
  • 4Ahmed E, Agiza H N, Hassan S Z. On modification of Puu' dynamical duopoly[J]. Chaos, Solitons & Fractals, 2000, 11:1025-1028.
  • 5Agiza H N, Hegazi A S, Elsadany A A. The dynamics of Bowley's model with bounded rationality[ J]. Chaos, Solitons & Fractals,2001, 12: 1705-1717.
  • 6Yassen M T, Agiza H N. Analysis of a duopoly game with delayed bounded rationality[J]. Applied Mathematics and Computation,2003, 138: 387-402.
  • 7Alvarado F L.The stability of power system markets[J].IEEE Trans.on Power Systems,1999,14(2):505-511.
  • 8Alvarado F.L.,Mota W.The role of energy imbalance management on power market stability[C].Proceedings of the 31st Hawaii International Conference on System Sciences,USA,1998,3:4-8.
  • 9Alvarado F L,Meng J,DeMarco C L.Stability analysis of interconnected power systems coupled with market dynamics[J].IEEE Trans.on Power Systems,2001,16(4):605-701.
  • 10Maiorano A,Song Y H,Trovato M.Dynamics of non-collusive oligopolistic electricity markets[C].IEEE Power Engineering Society Winter Meeting,Singapore.2000,2.838-844.

共引文献99

同被引文献177

引证文献18

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部