摘要
利用推广的Dini导数脉冲微分不等式和Lyapunov函数方法研究了一类非线性脉冲时滞微分系统解的指数渐近稳定性,并给出无脉冲扰动下此系统解一致稳定的一个判定准则,尤其突出了脉冲效应对系统稳定性所起到的关键影响.
Employing the extended Halanay's delay differential inequality and Lypunov functions, we study the exponential stability of a nonlinear impulsive delay differential equation. Some sufficients are obtained. Also, uniform stability of the equations without impulsive effect is established. The effect of impulses on the solutions of the equations is stressed here.
出处
《山东师范大学学报(自然科学版)》
CAS
2007年第3期1-3,共3页
Journal of Shandong Normal University(Natural Science)
基金
国家自然科学基金资助项目(10571111)