摘要
本文研究了Rd(d>2)上的扩散过程{XEt},它是Rd上退化扩散过程{Xt}的小随机扰动,其中{Xt}满足随机微分方程dXt=b(Xt)dt+(Xt)odWt;{Xεt}满足随机微分方程dXεt=b(Xεt)dt+(Xεt)odWt+ε(Xεt)dBt,ε>0通过构造辅助系统,给出了{Xεt}的Freidlin-Wentzell型的平均越出时间估计.
In this paper, we study the diffusion processes {Xt} in Rd (d>2), where {Xt} satisfy the stochastic differential equations dXεt = b (Xεt) dt +T (Xεt) o dWt + ε (Xεt) dBt, ε > 0. {Xεt} are small random perturbations of the degnnerate diffusion process {Xt}, which satisfies the stochastic differential equation dXt = b(Xt) dt + T(Xt) o dWt. By means of the auxiliary systems, we obtain the Freidlin-Wentzell mean exit time estimates of {Xεt}.
出处
《应用数学学报》
CSCD
北大核心
1997年第2期237-242,共6页
Acta Mathematicae Applicatae Sinica
关键词
平均越出时间
小扰动
扩散过程
随机微分方程
Mean exit time, large deviations, small perturbations, diffusion process