摘要
研究了一种基于计算机视觉的人脸检测系统,它采用模块化硬件技术和图像处理软件,满足实时检测的要求,可以有效检测出人脸。为该系统设计了一种基于判别函数分类器、模糊算法及人工神经网络的组合式多级分类器,具有一定的学习能力,当待测人脸发生变化时,系统可根据人脸数据库对分类器进行训练,以适应相关的变化。实验结果验证了该方法的有效性。
The face detection system based on machine visual was presented which uses modularized frame of hardware. The software of image processing can detect and classify defects. The system develops an effective assembled classifier by several pattern recognition technologies including distinguishes the function sorter,fuzzy algorithm and neural network. It has the ability of self-learning and can adapt to different equipments and materials by the training of classifier accordin~ to different sets of samples.The experimental results demonstrate the effectiveness.
出处
《科学技术与工程》
2007年第16期4224-4226,4245,共4页
Science Technology and Engineering
关键词
计算机视觉技术
人脸检测
分类器
神经网络
machine visual technology face detection assembled classifier neural network