期刊文献+

高频金融数据“日历效应”的小波神经网络模型分析 被引量:4

High-Frequency Financial Data Calendar Effects' Wavelet Neural Network Analysis
原文传递
导出
摘要 高频金融数据的分析与建模是金融计量学的一个全新的研究领域.高频数据"日历效应"是金融市场微观结构研究领域的重要发现,但是金融市场微观结构理论主要是从定性的角度研究"日历效应".如何定量地刻画高频数据"日历效应"是进一步深入理解金融市场的关键.论文提出用小波神经网络(WNN)来定量研究高频金融数据"日历效应",实证研究表明小波神经网络(WNN)很好地刻画了"日历效应". High-frequency financial data analysis and modeling is a new research field in financial econometrics, and the calendar effects are most important discovery in financial market microstructure field. But market microstructure theory is qualitative, how to study calendar effects quantitative is a big problem to know financial market. The paper proposes application of Wavelet Neural Network in high-frequency data calendar effects' study, and empirical study shows WNN is good method to describe calendar effects.
出处 《数学的实践与认识》 CSCD 北大核心 2007年第15期1-6,共6页 Mathematics in Practice and Theory
基金 国家自然科学基金(70471050)
关键词 高频金融数据 日历效应 周末效应 小波神经网络(WNN)模型 high-frequency financial data calendar effects weekend effects wavelet neural network model
  • 相关文献

参考文献14

  • 1Mclnish T H, Wood R A. A transaction data analysis of the variability of common stock returns during 1980- 1984[J]. Journal of Banking Finance, 1990, (14) : 99-112.
  • 2Admati A R, Pfleiderer P, A theory of intraday patterns: volume and price variability [J], The Review of Financial Studies,1988,1 (1) :3-40.
  • 3Brock W A, Kleidon A W. Periodic market closure and trading volume[J], Journal of Economic Dynamic and Control, 1992,16. 451-489.
  • 4Hedvall K. Trade concentration hypotheses: an Empirical test of information vs. demand models on the Helsinki Stock Exchange[J]. Journal of International Financial Markets, Institutions and Money, 1995, (5) : 135-163.
  • 5Andersen T G, Bollerslev T. Intraday periodicity and Volatility Persistence in Financial Markets[J]. Journal of Empirical Finance, 1997, (4) : 115-158.
  • 6Andersen T G, Bollerslev T, DM-Dollar volatility: Intraday Activity Patterns, Macroeconomic announcements, and Longer run dependencies[J]. Journal of Finance,1998, (53):219-265.
  • 7Pati Y C. Krishnaprasad P S, Analysis and synthesis of feed forward neural network using discrete affine wavelet[J], IEEE Trans on NN,1993.4(1) :73-75.
  • 8Szu H, Neural network adaptive wavelets for signal representation and classification[J], Optional Engineering, 1992.31 (9) :1907-1916.
  • 9Baskshi B R, Stephanopoulous G, Wave-net: a multiresolution, dierarchical neural network with local learning[J]. Amer Inst Chem Eng J, 1993,39 (1) : 57-81.
  • 10Zhang Jun. Wavelet neural networks for function learning[J], IEEE Trans on SP, 1995,43(6): 1485 -1497.

二级参考文献7

共引文献93

同被引文献44

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部