期刊文献+

一般化凸空间上截口定理及其对择一不等式的应用

Section Theorem and its Applications to Alternative Inequalities on Generalized Convex Spaces
原文传递
导出
摘要 我们根据一般化凸空间上的KKM型定理得到了截口定理,然后作为它的应用讨论了若干个择一不等式.最后,引进了一个具体的一般化凸空间并在该空间上讨论了择一不等式解的存在性问题. We used the KKM type theorem on generalized convex spaces to obtain section theorem, and then discussed some alternative inequalities as its applications. Finally, we introduced a generalized convex space and discussed the existence problems of solutions for alternative inequalities on this space.
出处 《数学的实践与认识》 CSCD 北大核心 2007年第15期120-125,共6页 Mathematics in Practice and Theory
基金 国家自然科学基金(10361005) 延边大学科研项目(2004年8号)
关键词 一般化凸空间 Γ-凸的 下半连续 KKM映射 转移闭(开)值的 generalized convex spaces Γ -convex lower semicontinuous KKM map transfer closed (open) valued
  • 相关文献

参考文献11

  • 1Ky Fan. A Minimax Inequality and Applications[M]. Inequalities III(O. Shisha. ed) Academic Press. New Yorw,1972. 103-113.
  • 2Sehie Park. Ninety years of the Brouwer fixed point theorem[J]. Vietnam J Math,1997,27(3): 187-222.
  • 3Lassonde M. On the use of KKM multimaps in fixed point theory and related topics[J]. J Math Anal Appl,1983, 97:151-201.
  • 4Horvath C D. Contractibility and generalized convexity[J]. J Math Anal Appl,1991,156:341-357.
  • 5Tian G Q. Generalization of KKM theorem and the Ky Fan minimax inequality with applications to maximal elements, price equilibrium and complementarity[J]. J Math Anal Appl,1992,170:457-471.
  • 6Park S H, Kim H J. Generalizations of the KKM type theorems on generalized convex spaces[J]. Indian J Pure Appl Math, 1998,29(2) : 121-132.
  • 7Granas A. et al. Sur Quelques Methodes Topologiques En Analyse Convexe[M]. Les Presses de L'universite de Montreal, Montreal (Quebec), Canada,1990. 14-77.
  • 8Chang S S, Ma Y H. Generalized KKM theorem on H-Space with applications[J]. J Math Anal Appl, 1992,163: 406-421.
  • 9Lu H T, Ding X P. Generalized KKM theorems in topological space and its applications[J]. J Sichuan Normal Univ, 1990,13:20-25.
  • 10Ding X P, Tan K K. Matching theorems, fixed point theorems and minimax inequalities without convexity[J]. J Austral Math Soc (Ser. A), 1990, 49: 111-128.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部