摘要
研究了二阶非线性变时滞微分方程x″(t)+p(t)f(x(g(t)))=0的振动性,对振动因子p(t)变号的情况,给出了两个重要的引理,并得到方程振动的一个充分性定理.所得结论推广了二阶非线性变时滞微分方程当系数不变号时原有的振动性结论.
This paper studies the oscillation of a kind of second-order variable delay differential equation x″(t) + p(t)f(x(g(t))) = 0. Two important lemmas and a sufficient condition for the oscillation of all solutions of the equation with variable coefficient p(t) are obtained. We generalize the results of second-order nonlinear differential equation and variable delay differential equation with invariable coefficient.
出处
《数学的实践与认识》
CSCD
北大核心
2007年第15期155-159,共5页
Mathematics in Practice and Theory
基金
北京市教委科技基金资助项目(KM200610009004)
关键词
非线性
系数变号
变时滞微分方程
振动性
nonlinear
variable coefficient
variable delay differential equation
oscillation